The improvement of hepatic insulin sensitivity by the cannabinoid receptor 1 (CB1R) antagonist rimonabant (RIM) has been recently been reported to be due to upregulation of adiponectin. Several studies demonstrated that improvement in insulin clearance accompanies the enhancement of hepatic insulin sensitivity. However, the effects of RIM on hepatic insulin clearance (HIC) have not been fully explored.
View Article and Find Full Text PDFBackground: Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia.
Objective: To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets.
Objective: Insulin resistance is a powerful risk factor for Type 2 diabetes and a constellation of chronic diseases, and is most commonly associated with obesity. We examined if factors other than obesity are more substantial predictors of insulin sensitivity under baseline, nonstimulated conditions.
Methods: Metabolic assessment was performed in healthy dogs (n = 90).
The endocannabinoid system is highly implicated in the development of insulin resistance associated with obesity. It has been shown that antagonism of the CB(1) receptor improves insulin sensitivity (S(I)). However, it is unknown whether this improvement is due to the direct effect of CB(1) blockade on peripheral tissues or secondary to decreased fat mass.
View Article and Find Full Text PDFObesity (Silver Spring)
November 2011
Adipocyte size plays a key role in the development of insulin resistance. We examined longitudinal changes in adipocyte size and distribution in visceral (VIS) and subcutaneous (SQ) fat during obesity-induced insulin resistance and after treatment with CB-1 receptor antagonist, rimonabant (RIM) in canines. We also examined whether adipocyte size and/or distribution is predictive of insulin resistance.
View Article and Find Full Text PDFObjectives: The canine model has been used extensively to improve the human pancreatic islet isolation technique. At the functional level, dog islets show high similarity to human islets and thus can be a helpful tool for islet research. We describe and compare 2 manual isolation methods, M1 (initial) and M2 (modified), and analyze the variables associated with the outcomes, including islet yield, purity, and glucose-stimulated insulin secretion (GSIS).
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
July 2010
Recent studies in animal and human models have revealed that free fatty acid (FFA) release from adipose tissue is oscillatory. We have shown in our laboratory that these oscillations are controlled by the sympathetic nervous system (SNS). Although FFAs have been shown to directly stimulate glucose production [endogenous glucose production (EGP)] by the liver and to reduce peripheral glucose utilization, whether the specific pattern of FFA release affects glucose metabolism is unknown.
View Article and Find Full Text PDFWe investigated whether rimonabant, a type 1 cannabinoid receptor antagonist, reduces visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in dogs maintained on a hypercaloric high-fat diet (HHFD). To determine whether energy expenditure contributed to body weight changes, we also calculated resting metabolic rate. Twenty male dogs received either rimonabant (1.
View Article and Find Full Text PDFThe term metabolic syndrome describes the association between obesity, insulin resistance, and the risk of several prominent chronic diseases, including cancer. The causal link between many of these components remains unexplained, however. What is clear are the events that precede the development of the syndrome itself.
View Article and Find Full Text PDFObesity (Silver Spring)
October 2007
Objective: Recent studies have shown that free fatty acid (FFA) release is pulsatile and that this pattern is controlled by the sympathetic nervous system. It is, then, necessary to understand and characterize adipose tissue lipolysis to elucidate its effect on metabolism. In this study, we introduce deconvolution as a method to detect and quantify pulsatile FFA release.
View Article and Find Full Text PDFVisceral adiposity has been identified as an independent risk factor for cardiovascular disease and the so-called metabolic syndrome. The canine obesity model closely recapitulates the correlation between human visceral adiposity and insulin resistance. A recent canine study indicates that insulin expands the volume of distribution associated with skeletal muscle, and that its ability to enhance macromolecular distribution within this space is blunted in the fat-fed obese canine model.
View Article and Find Full Text PDFObesity is strongly associated with hyperinsulinemia and insulin resistance, both primary risk factors for type 2 diabetes. It has been thought that increased fasting free fatty acids (FFA) may be responsible for the development of insulin resistance during obesity, causing an increase in plasma glucose levels, which would then signal for compensatory hyperinsulinemia. But when obesity is induced by fat feeding in the dog model, there is development of insulin resistance and a marked increase in fasting insulin despite constant fasting FFA and glucose.
View Article and Find Full Text PDFObesity (Silver Spring)
February 2006