Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome biogenesis were not completely deciphered.
View Article and Find Full Text PDFAstrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB). By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas.
View Article and Find Full Text PDFCoagulation proteins play a critical role in numerous aspects of tumor biology. Cancer cells express tissue factor (TF), the protein that initiates blood clotting, which frequently correlates with processes related to cell aggressiveness, including primary tumor growth, invasion, and metastasis. It has been demonstrated that TF gets incorporated into tumor-derived microvesicles (MVs), a process that has been correlated with cancer-associated thrombosis.
View Article and Find Full Text PDFThe co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrP(C)). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20-50, 100-200, and 300-400 nm.
View Article and Find Full Text PDFExosomes are membrane vesicles that are released by cells upon fusion of multivesicular bodies with the plasma membrane. Their molecular composition reflects their origin in endosomes as intraluminal vesicles. In addition to a common set of membrane and cytosolic molecules, exosomes harbor unique subsets of proteins linked to cell type-associated functions.
View Article and Find Full Text PDFReservosomes are endocytic organelles from Trypanosoma cruzi epimastigotes that store proteins and lipids for future use. The lack of molecular markers for the compartments of this parasite makes it difficult to clarify all reservosome functions, as they present characteristics of pre-lysosomes, lysosomes and recycling compartments.
View Article and Find Full Text PDFPrion diseases are neurodegenerative disorders associated in most cases with the accumulation in the central nervous system of PrPSc (conformationally altered isoform of cellular prion protein (PrPC); Sc for scrapie), a partially protease-resistant isoform of the PrPC. PrPSc is thought to be the causative agent of transmissible spongiform encephalopathies. The mechanisms involved in the intercellular transfer of PrPSc are still enigmatic.
View Article and Find Full Text PDFExosomes are membrane vesicles released into the extracellular environment upon exocytic fusion of multivesicular endosomes with the cell surface. Exosome secretion can be used by cells to eject molecules targeted to intraluminal vesicles of multivesicular bodies, but particular cell types may exploit exosomes as intercellular communication devices for transfer of proteins and lipids among cells. The glycosylphosphatyidylinositol-linked prion protein (PrP) in both its normal (PrPc) and scrappie (PrPsc) conformation is associated with exosomes.
View Article and Find Full Text PDFReservosomes are acidic compartments present at the posterior region of epimastigote forms of Trypanosoma cruzi that store proteins and lipids. During metacyclogenesis, they consume their contents and disappear. Reservosomes are rich in cruzipain, the main proteolytic enzyme of this parasite.
View Article and Find Full Text PDF