Publications by authors named "Isabel Pino"

MOGHE is defined as mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Approximately half of the patients with histopathologically confirmed MOGHE carry a brain somatic variant in the SLC35A2 gene encoding a UDP-galactose transporter. Previous research showed that D-galactose supplementation results in clinical improvement in patients with a congenital disorder of glycosylation due to germline variants in SLC35A2.

View Article and Find Full Text PDF

Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier.

View Article and Find Full Text PDF

Interneurons are fundamental cells for maintaining the excitation-inhibition balance in the brain in health and disease. While interneurons have been shown to play a key role in the pathophysiology of autism spectrum disorder (ASD) in adult mice, little is known about how their maturation is altered in the developing striatum in ASD. Here, we aimed to track striatal developing interneurons and elucidate the molecular and physiological alterations in the knockout mouse model.

View Article and Find Full Text PDF

The serotonergic system of mammals innervates virtually all the central nervous system and regulates a broad spectrum of behavioral and physiological functions. In mammals, serotonergic neurons located in the rostral raphe nuclei encompass diverse sub-systems characterized by specific circuitry and functional features. Substantial evidence suggest that functional diversity of serotonergic circuits has a molecular and connectivity basis.

View Article and Find Full Text PDF

Objective: This study was aimed to analyze the effectiveness of sodium channel blockers (SCBs) in CDKL5 deficiency disorder (CDD)-related epilepsy.

Methods: A retrospective, observational study was performed, including patients with CDD diagnosis evaluated between 2016 and 2019 at three tertiary Epilepsy Centers. Demographic, electroclinical and genetic features, as well as ASM treatments and their outcomes were analyzed, with special focus on SCBs.

View Article and Find Full Text PDF

The assembly of specific neuronal circuits relies on the expression of complementary molecular programs in presynaptic and postsynaptic neurons. In the cerebral cortex, the tyrosine kinase receptor ErbB4 is critical for the wiring of specific populations of GABAergic interneurons, in which it paradoxically regulates both the formation of inhibitory synapses as well as the development of excitatory synapses received by these cells. Here, we found that Nrg1 and Nrg3, two members of the neuregulin family of trophic factors, regulate the inhibitory outputs and excitatory inputs of interneurons in the mouse cerebral cortex, respectively.

View Article and Find Full Text PDF

Critical periods of brain development are epochs of heightened plasticity driven by environmental influence necessary for normal brain function. Recent studies are beginning to shed light on the possibility that timely interventions during critical periods hold potential to reorient abnormal developmental trajectories in animal models of neurological and neuropsychiatric disorders. In this review, we re-examine the criteria defining critical periods, highlighting the recently discovered mechanisms of developmental plasticity in health and disease.

View Article and Find Full Text PDF

The formation of functional cortical maps in the cerebral cortex results from a timely regulated interaction between intrinsic genetic mechanisms and electrical activity. To understand how transcriptional regulation influences network activity and neuronal excitability within the neocortex, we used mice deficient for Nr2f1 (also known as COUP-TFI), a key determinant of primary somatosensory (S1) area specification during development. We found that the cortical loss of Nr2f1 impacts on spontaneous network activity and synchronization of S1 cortex at perinatal stages.

View Article and Find Full Text PDF

Neuropsychiatric disorders arise from the alteration of normal brain developmental trajectories disrupting the function of specific neuronal circuits. Recent advances in human genetics have greatly accelerated the identification of genes whose variation increases the susceptibility for neurodevelopmental disorders, most notably for autism spectrum disorder (ASD) and schizophrenia. In parallel, experimental studies in animal models-most typically in mice-are beginning to shed light on the role of these genes in the development and function of specific brain circuits.

View Article and Find Full Text PDF

The function of cortical GABAergic interneurons is largely determined by their integration into specific neural circuits, but the mechanisms controlling the wiring of these cells remain largely unknown. This is particularly true for a major population of basket cells that express the neuropeptide cholecystokinin (CCK). Here we found that the tyrosine kinase receptor ErbB4 was required for the normal integration into cortical circuits of basket cells expressing CCK and vesicular glutamate transporter 3 (VGlut3).

View Article and Find Full Text PDF

The function of neural circuits depends on the generation of specific classes of neurons. Neural identity is typically established near the time when neurons exit the cell cycle to become postmitotic cells, and it is generally accepted that, once the identity of a neuron has been established, its fate is maintained throughout life. Here, we show that network activity dynamically modulates the properties of fast-spiking (FS) interneurons through the postmitotic expression of the transcriptional regulator Er81.

View Article and Find Full Text PDF

Background: Our objective was to test whether brief daily activity could increase young students' physical fitness and compare different forms of intervention delivery.

Methods: Two intervention groups were instructed to increase children's activity by 6 minutes daily. The principal was responsible for the intervention in the first group while classroom teachers were responsible in the second.

View Article and Find Full Text PDF

Integration of newly generated neurons into adult cell assemblies is a key mechanism for network plasticity. In this issue of Developmental Cell, Garcia et al. (2014) reveal a neuropeptidergic signaling mechanism by which interneurons of the olfactory system act as directors for the activity-dependent integration of adult-born granule cells.

View Article and Find Full Text PDF

Glycine receptors (GlyRs) mediate inhibitory neurotransmission in spinal cord and brainstem. They are clustered at inhibitory postsynapses via a tight interaction of their β subunits (GlyRβ) with the scaffolding protein gephyrin. In an attempt to isolate additional proteins interacting with GlyRβ, we performed pulldown experiments with rat brain extracts using a glutathione S-transferase fusion protein encompassing amino acids 378-455 of the large intracellular loop of GlyRβ as bait.

View Article and Find Full Text PDF

Genetic variation in neuregulin and its ErbB4 receptor has been linked to schizophrenia, although little is known about how they contribute to the disease process. Here, we have examined conditional Erbb4 mouse mutants to study how disruption of specific inhibitory circuits in the cerebral cortex may cause large-scale functional deficits. We found that deletion of ErbB4 from the two main classes of fast-spiking interneurons, chandelier and basket cells, causes relatively subtle but consistent synaptic defects.

View Article and Find Full Text PDF

Background: In order to minimize the influence of glycolysis on diabetes mellitus (DM) diagnostic tests, we have compared the behavior of citric/citrate, fluoride additives and gel-serum with plasma-heparin under careful preanalytical conditions. Subsequently, we compared the effectiveness of both fluoride and citric additives at different pre-centrifugation times. Finally, the influence of citric/citrate collection tube on diagnostic tests results was evaluated.

View Article and Find Full Text PDF

The establishment of neural circuits depends on the ability of axonal growth cones to sense their surrounding environment en route to their target. To achieve this, a coordinated rearrangement of cytoskeleton in response to extracellular cues is essential. Although previous studies have identified different chemotropic and adhesion molecules that influence axonal development, the molecular mechanism by which these signals control the cytoskeleton remains poorly understood.

View Article and Find Full Text PDF

Inhibitory glycine receptors (GlyRs) are densely packed in the postsynaptic membrane due to a high-affinity interaction of their β-subunits with the scaffolding protein gephyrin. Here, we used an affinity-based proteomic approach to identify the trafficking proteins Vacuolar Protein Sorting 35 (Vps35) and Neurobeachin (Nbea) as novel GlyR β-subunit (GlyRβ) interacting proteins in rat brain. Recombinant Vps35 and a central fragment of Nbea bound to the large intracellular loop of GlyRβ in glutathione-S-transferase pull-downs; in addition, Vps35 displayed binding to gephyrin.

View Article and Find Full Text PDF

Neuroblastoma is a pediatric tumor that is thought to arise from autonomic precursors in the neural crest. Mutations in the PHOX2B gene have been observed in familial and sporadic forms of neuroblastoma and represent the first defined genetic predisposition for neuroblastoma. Here, we address the mechanisms that may underlie this predisposition, comparing the function of wild-type and mutant Phox2b proteins ectopically expressed in proliferating, embryonic sympathetic neurons.

View Article and Find Full Text PDF