Vet Res
April 2024
Gene expression for Th1/Th2 cytokines (IL-4 and IFN-ɣ), regulatory cytokines (TGF-β and IL-10) and the transcriptional factor FoxP3 was analyzed in the liver and hepatic lymph nodes (HLN) from sheep immunized with partially protective and non-protective vaccine candidates and challenged with Fasciola hepatica. FoxP3 T cells were also evaluated by immunohistochemistry (IHQ). The most remarkable difference between the partially protected vaccinated (V1) group and the non-protected vaccinated (V2) group was a more severe expansion of FoxP3 T cells recorded by IHQ in both the liver and HLN of the V2 group as compared to the V1 group, whereas no differences were found between the V2 group and the infected control (IC) group.
View Article and Find Full Text PDFEur Urol Oncol
June 2024
Background: Radium-223 is an active therapy option for bone metastatic castration-resistant prostate cancer (mCRPC). The lack of adequate biomarkers for patient selection and response assessment are major drawbacks for its use.
Objective: To assess the prognostic value of bone metabolism biomarkers (BMBs) in ra-223-treated mCRPC patients.
This paper describes the first documented outbreak of haemorrhagic septicaemia (HS) caused by Pasteurella multocida type B in cattle in Spain. This acute, highly fatal septicaemia causes major economic losses in cattle and buffaloes in many areas of Asia and Africa. In other species and in European countries it is an infrequently reported disease.
View Article and Find Full Text PDFPolyphenols in red wine are bioactive compounds with positive effects on health and disease prevention. White grape musts and wines have a lower concentration of phenolic compounds compared to the red ones and are therefore considered less beneficial to health. In Andalucía, a region located in the South West of Spain, Pedro Ximenez white grapes are desiccated under the sun for a week before they are pressed and the juice (must) is obtained.
View Article and Find Full Text PDFFasciola hepatica has been shown to have a high capacity for immunomodulation of the host response, making the development of protective vaccines extremely difficult. One of these immunomodulation mechanisms is the impairment of dendritic cells (DC) maturation and, therefore, suppression of antigenic presentation. The aim of this study was to evaluate the pathological changes as well as the characterization of two antigen presenting cells, DC (CD1b, CD83 and MHC-II positive) and follicular dendritic cells (FDC) (CNA.
View Article and Find Full Text PDFAging is characterized by deterioration of biomolecules and impaired stress responses that make the elderly especially vulnerable to environmental pollutants. The pesticide p,p'-DDE is a DDT derivative that generates great concern because of its wide distribution and its harmful effects on both human health and the environment. We analyzed here the biological responses elicited by p,p'-DDE exposure in the liver of aged Mus spretus mice.
View Article and Find Full Text PDFBackground: The peritoneal cell populations (PCP) are thought to play a crucial role during the early immune response in Fasciola hepatica infection while newly excysted juveniles (NEJ) are migrating in the peritoneal cavity (PC) towards the liver. In this study, we aimed to determine the immunophenotypes of the PCP and to analyse the dynamics of the recruitment of the PCP during the early and late stage of the infection in sheep infected with F. hepatica.
View Article and Find Full Text PDFThe expression of T regulatory cells (Foxp3), regulatory (interleukin [IL]-10 and transforming growth factor beta [TGF-β]) and proinflammatory (tumor necrosis factor alpha [TNF-α] and interleukin [IL]-1β) cytokines was quantified using real time polymerase chain reaction (qRT-PCR) in the liver of sheep during early stages of infection with Fasciola hepatica (1, 3, 9, and 18 days post-infection [dpi]). Portal fibrosis was also evaluated by Masson's trichrome stain as well as the number of Foxp3 cells by immunohistochemistry. Animals were divided into three groups: (a) group 1 was immunized with recombinant cathepsin L1 from F.
View Article and Find Full Text PDFThe sulfate-reducing bacteria of the Desulfovibrio genus make three distinct modified tetrapyrroles, haem, sirohaem and adenosylcobamide, where sirohydrochlorin acts as the last common biosynthetic intermediate along the branched tetrapyrrole pathway. Intriguingly, D. vulgaris encodes two sirohydrochlorin chelatases, CbiK and CbiK , that insert cobalt/iron into the tetrapyrrole macrocycle but are thought to be distinctly located in the periplasm and cytoplasm respectively.
View Article and Find Full Text PDFPatients with Gaucher type 1 (GD1) throughout Argentina were enrolled in the Argentine bone project to evaluate bone disease and its determinants. We focused on presence and predictors of bone lesions (BL) and their relationship to therapeutic goals (TG) with timing and dose of enzyme replacement therapy (ERT). A total of 124 patients on ERT were enrolled in a multi-center study.
View Article and Find Full Text PDFThe versatile anaerobic metabolism of the Gram-negative bacterium Shewanella oneidensis MR-1 (SOMR-1) relies on a multitude of redox proteins found in its periplasm. Most are multiheme cytochromes that carry electrons to terminal reductases of insoluble electron acceptors located at the cell surface, or bona fide terminal reductases of soluble electron acceptors. In this study, the interaction network of several multiheme cytochromes was explored by a combination of NMR spectroscopy, activity assays followed by UV-visible spectroscopy and comparison of surface electrostatic potentials.
View Article and Find Full Text PDFRepair of Iron Centres (RICs) are a widely-spread family of diiron proteins involved in the protection of iron-sulphur-containing enzymes from nitrosative and oxidative stress. Here, homology-based modelling was used to predict putative ligands of the RIC diiron centre in E. coli.
View Article and Find Full Text PDFDissimilatory metal reducing organisms play key roles in the biogeochemical cycle of metals as well as in the durability of submerged and buried metallic structures. The molecular mechanisms that support electron transfer across the microbe-metal interface in these organisms remain poorly explored. It is known that outer membrane proteins, in particular multiheme cytochromes, are essential for this type of metabolism, being responsible for direct and indirect, via electron shuttles, interaction with the insoluble electron acceptors.
View Article and Find Full Text PDFExtracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surface. Lack of knowledge on how these electrons flow across the periplasmic space is one of the unresolved issues related with extracellular electron transfer.
View Article and Find Full Text PDFDesulfovibrio spp. are sulfate-reducing organisms characterized by having multiple periplasmic hydrogenases and formate dehydrogenases (FDHs). In contrast to enzymes in most bacteria, these enzymes do not reduce directly the quinone pool, but transfer electrons to soluble cytochromes c.
View Article and Find Full Text PDFObjective: To compare reproductive performance among pregnancies initiated with autologous oocytes and donated oocytes.
Design: Retrospective cohort analysis.
Setting: Clínica las Condes Hospital, a tertiary referral center in Chile; Fertility, Centro de Fertilizaçao Assistida, Brazil; and 130 institutions reporting to the Latin American Registry (RLA) of assisted reproductive technologies (ART).
Bacteria of the genus Shewanella contain an abundant small tetraheme cytochrome in their periplasm when growing anaerobically. Data collected for the protein isolated from S. oneidensis MR-1 and S.
View Article and Find Full Text PDFFor the first time a complete characterization by infrared spectroscopy of a Ni-Fe-Se hydrogenase in its different redox states is reported. The Ni-Fe-Se hydrogenase was isolated from Desulfovibrio vulgaris Hildenborough. Two different electron paramagnetic resonance silent and air-stable redox states that are not in equilibrium were detected.
View Article and Find Full Text PDFBackground: Gene expression profiling of normal receptive endometrium has been characterized, but intrinsic defects in endometrial gene expression associated with implantation failure have not been reported.
Methods: Women who had previously participated as recipients in oocyte donation cycles and repeatedly exhibited implantation failure (Group A, study group) or had at least one successful cycle (Group B, control group) and spontaneously fertile women (Group C, normal fertility group) were recruited. All were treated with exogenous estradiol and progesterone to induce an endometrial cycle, and an endometrial biopsy was taken on the seventh day of progesterone administration.
Desulfovibrio vulgaris Hildenborough is a good model organism to study hydrogen metabolism in sulfate-reducing bacteria. Hydrogen is a key compound for these organisms, since it is one of their major energy sources in natural habitats and also an intermediate in the energy metabolism. The D.
View Article and Find Full Text PDFThe genome of Desulfovibrio vulgaris Hildenborough (DvH) encodes for six hydrogenases (Hases), making it an interesting organism to study the role of these proteins in sulphate respiration. In this work we address the role of the [NiFeSe] Hase, found to be the major Hase associated with the cytoplasmic membrane. The purified enzyme displays interesting catalytic properties, such as a very high H(2) production activity, which is dependent on the presence of phospholipids or detergent, and resistance to oxygen inactivation since it is isolated aerobically in a Ni(II) oxidation state.
View Article and Find Full Text PDFNMR and visible spectroscopy were used to characterize the type II tetraheme cytochrome c(3) isolated from the periplasmic space of Desulfovibrio africanus, a sulfate-reducing bacterium. Although structurally similar to other cytochromes c(3), this protein displays distinct functional properties. Proton NMR signals from the four hemes were assigned to the structure in the ferri- and ferrocytochromes using two-dimensional NMR experiments.
View Article and Find Full Text PDF