Publications by authors named "Isabel Maida"

A key factor in the study of plant-microbes interactions is the composition of plant microbiota, but little is known about the factors determining its functional and taxonomic organization. Here we investigated the possible forces driving the assemblage of bacterial endophytic and rhizospheric communities, isolated from two congeneric medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC) Heller, grown in the same soil, by analysing bacterial strains (isolated from three different compartments, i.

View Article and Find Full Text PDF

Aim: To investigate the activity and mechanisms of action of six essential oils (EOs) against Burkholderia cepacia complex, opportunistic human pathogens highly resistant to antibiotics.

Materials & Methods: Minimal inhibitory concentration of EOs alone, plus antibiotics or efflux pump inhibitors was determined.

Results: Origanum vulgare, Thymus vulgaris and Eugenia caryophyllata EOs resulted to be more active than the other EOs.

View Article and Find Full Text PDF

Burkholderia cepacia complex bacteria (Bcc) represent a serious threat for immune-compromised patient affected by Cystic Fibrosis (CF) since they are resistant to many substances and to most antibiotics. For this reason, the research of new natural compounds able to inhibit the growth of Bcc strains has raised new interest during the last years. A source of such natural compounds is represented by medicinal plants and, in particular, by bacterial communities associated with these plants able to produce molecules with antimicrobial activity.

View Article and Find Full Text PDF

Background: Pseudoalteromonas is a genus of ubiquitous marine bacteria used as model organisms to study the biological mechanisms involved in the adaptation to cold conditions. A remarkable feature shared by these bacteria is their ability to produce secondary metabolites with a strong antimicrobial and antitumor activity. Despite their biotechnological relevance, representatives of this genus are still lacking (with few exceptions) an extensive genomic characterization, including features involved in the evolution of secondary metabolites production.

View Article and Find Full Text PDF

The Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 has been reported to produce several Volatile Organic Compounds (VOCs), which are able to inhibit the growth of Burkholderia cepacia complex (Bcc) strains, opportunistic pathogens responsible for the infection of immune-compromised patients. However, no specific antibacterial VOCs have been identified to date. The purpose of the present study was to identify specific VOCs that contribute to Bcc inhibition by the Antarctic strain.

View Article and Find Full Text PDF

In recent years, there has been increasing interest in plant microbiota; however, despite medicinal plant relevance, very little is known about their highly complex endophytic communities. In this work, we report on the genomic and phenotypic characterization of the antimicrobial compound producer Rheinheimera sp. EpRS3, a bacterial strain isolated from the rhizospheric soil of the medicinal plant Echinacea purpurea.

View Article and Find Full Text PDF

We examined whether the microbiota of two related aromatic thyme species, Thymus vulgaris and Thymus citriodorus, differs in relation to the composition of the respective essential oil (EO). A total of 576 bacterial isolates were obtained from three districts (leaves, roots and rhizospheric soil). They were taxonomically characterized and inspected for tolerance to the EO from the two thyme species.

View Article and Find Full Text PDF

Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans.

View Article and Find Full Text PDF

We report here the draft genome sequence of the Pseudomonas sp. TAA207 and Pseudomonas sp. TAD18 strains, isolated from Antarctic sediments during a summer campaign near coastal areas of Terra Nova Bay (Antarctica).

View Article and Find Full Text PDF

We announce here the draft genome sequence of Pseudomonas sp. strain EpS/L25, isolated from the stem/leaves of the medicinal plant Echinacea purpurea This genome will allow for comparative genomics in order to identify genes associated with the production of bioactive compounds and antibiotic resistance.

View Article and Find Full Text PDF

Microorganisms living in extreme environments represent a huge reservoir of novel antimicrobial compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers of valuable secondary metabolites.

View Article and Find Full Text PDF

Crude oil is a complex mixture of hydrocarbons and other organic compounds that can produce serious environmental problems and whose removal is highly demanding in terms of human and technological resources. The potential use of microbes as bioremediation agents is one of the most promising fields in this area. Members of the species Acinetobacter venetianus have been previously characterized for their capability to degrade n-alkanes and thus may represent interesting model systems to implement this process.

View Article and Find Full Text PDF

This study investigated the relationship between host efflux system of the non-vertebrate nematode Caenorhabditis elegans and Burkholderia cepacia complex (Bcc) strain virulence. This is the first comprehensive effort to profile host-transporters within the context of Bcc infection. With this aim, two different toxicity tests were performed: a slow killing assay that monitors mortality of the host by intestinal colonization and a fast killing assay that assesses production of toxins.

View Article and Find Full Text PDF

In this work the analysis of the plasmid presence on soil aerobic cultivable heterotrophic bacterial communities was carried out checking a panel of 1,200 isolates, in order to establish the frequency of plasmid presence as well as the degree of plasmid flow between strains affiliated to the same or different taxon. Bacterial communities were isolated from two different sites of a 13-year experimental field with a clay-silt texture. Plasmid molecules were detected at low frequency (27 isolates, 2%) with a size ranging between 2 Kb and 40 Kb.

View Article and Find Full Text PDF

In this work we analyzed the composition and structure of cultivable bacterial communities isolated from the stem/leaf and root compartments of two medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC.) Hell, grown in the same soil, as well as the bacterial community from their rhizospheric soils.

View Article and Find Full Text PDF

The growing number of available microbial genomes offers the possibility to identify features that could be used for identification. In this work, the possibility to exploit overlapping genes to develop a simple PCR based method of identification, was explored. Using the Burkholderia cepacia complex as a model, genomic analyses were performed to check the phylogenetic distribution of an overlap between marC and hisH genes and then, a PCR specific for Burkholderia was designed, set up and tested on a panel of strains and on DNA extracted from the sputum of cystic fibrosis patients.

View Article and Find Full Text PDF

In this work we have studied the antagonistic interactions existing among cultivable bacteria isolated from three ecological niches (rhizospheric soil, roots and stem/leaves) of the traditional natural medicinal plant Echinacea purpurea. The three compartments harboured different taxonomic assemblages of strains, which were previously reported to display different antibiotic resistance patterns, suggesting the presence of differential selective pressure due to antagonistic molecules in the three compartments. Antagonistic interactions were assayed by the cross-streak method and interpreted using a network-based analysis.

View Article and Find Full Text PDF

Azospirillum brasilense is a nitrogen-fixing bacterium living in association with plant roots. The genome of the strain Sp245, isolated in Brazil from wheat roots, consists of one chromosome and six plasmids. In this work, the A.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that antibiotic resistance is common in various environments and organisms, especially in plants like Echinacea purpurea that host diverse bacterial communities.
  • A study of 137 bacterial isolates from different plant organs revealed significant variability in antibiotic resistance, correlated with the specific plant organ they came from.
  • The findings suggest that different plant organs support distinct biological interactions, which influence the patterns of antibiotic resistance observed among the bacterial strains.
View Article and Find Full Text PDF

Endophytic bacteria play a crucial role in plant life and are also drawing much attention for their capacity to produce bioactive compounds of relevant biotechnological interest. Here we present the characterisation of the cultivable endophytic bacteria of Lavandula angustifolia Mill.-a species used since antiquity for its therapeutic properties-since the production of bioactive metabolites from medical plants may reside also in the activity of bacterial endophytes through their direct production, PGPR activity on host, and/or elicitation of plant metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied the Antarctic bacteria Pseudoalteromonas haloplanktis TAC125 to explore its potential as a biotechnology expression host, focusing on its metabolic features using computational models and -omics data.
  • They created a detailed genome-scale metabolic model, incorporating 721 genes, 1133 metabolites, and 1322 reactions, which was validated against experimental growth rates.
  • The study highlighted how cold temperatures can affect the bacterium's metabolism, revealing challenges in its central metabolism and biosynthesis processes, while providing a foundation for future research and biotechnological applications.
View Article and Find Full Text PDF

In this work we have checked the ability of the essential oils extracted from six different medicinal plants (Eugenia caryophyllata, Origanum vulgare, Rosmarinus officinalis, Lavandula officinalis, Melaleuca alternifolia, and Thymus vulgaris) to inhibit the growth of 18 bacterial type strains belonging to the 18 known species of the Burkholderia cepacia complex (Bcc). These bacteria are opportunistic human pathogens that can cause severe infection in immunocompromised patients, especially those affected by cystic fibrosis (CF), and are often resistant to multiple antibiotics. The analysis of the aromatograms produced by the six oils revealed that, in spite of their different chemical composition, all of them were able to contrast the growth of Bcc members.

View Article and Find Full Text PDF

Using a computational pipeline based on similarity networks reconstruction we analysed the 1133 genes of the Burkholderia vietnamiensis (Bv) G4 five plasmids, showing that gene and operon duplication played an important role in shaping the plasmid architecture. Several single/multiple duplications occurring at intra- and/or interplasmids level involving 253 paralogous genes (stand-alone, clustered or operons) were detected. An extensive gene/operon exchange between plasmids and chromosomes was also disclosed.

View Article and Find Full Text PDF

Herein we present the draft genomes of three Psychrobacter strains isolated from Antarctic sponges and able to inhibit the growth of bacteria belonging to the Burkholderia cepacia complex, responsible for infections of the respiratory system in patients affected by Cystic Fibrosis. The comparative analysis of the annotated genomes of these Psychrobacter strains highlighted their differences in terms of overall genomic content (e.g.

View Article and Find Full Text PDF