Cartilage
April 2024
Objective: To investigate intermediate-term clinical results in patients with concomitant anterior cruciate ligament (ACL) reconstruction and chondral defect treated with high-density autologous chondrocyte implantation (HD-ACI) compared to patients without ACL tear but with a chondral lesion and HD-ACI treatment.
Design: Forty-eight patients with focal chondral lesions underwent HD-ACI (24 with ACL reconstruction after an ACL injury and 24 with an intact ACL). Follow-up assessments occurred at 6, 12, and 24 months.
Hyaline cartilage's inability to self-repair can lead to osteoarthritis and joint replacement. Various treatments, including cell therapy, have been developed for cartilage damage. Autologous chondrocyte implantation (ACI) is considered the best option for focal chondral lesions.
View Article and Find Full Text PDFBackground: Knee examination guidelines in minors are intended to aid decision-making in the management of knee instability.
Clinical Question: A Delphi study was conducted with a formal consensus process using a validated methodology with sufficient scientific evidence. A group consensus meeting was held to develop recommendations and practical guidelines for use in the assessment of instability injuries in children.
Purpose: Two-year follow-up to assess efficacy and safety of high-density autologous chondrocyte implantation (HD-ACI) in patients with cartilage lesions in the ankle.
Design: Twenty-four consecutive patients with International Cartilage repair Society (ICRS) grade 3-4 cartilage lesions of the ankle were included. Five million chondrocytes per cm of lesion were implanted using a type I/III collagen membrane as a carrier and treatment effectiveness was assessed by evaluating pain with the visual analogue scale (VAS) and American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot score at baseline, 12-month, and 24-month follow-up, together with dorsal and plantar flexion.
Design: In the process of cell division, the extremes of the eukaryotic chromosomes are progressively shortening, and this phenomenon is related to cell degeneration and senescence. The treatment of cartilage lesions with autologous chondrocytes implies that cells proliferate in an artificial environment. We have studied the viability of cultured chondrocytes after measurement of their telomere length before implantation.
View Article and Find Full Text PDFObjective: The aim of this work was to study the short- and mid-term effectiveness and safety of high-density autologous chondrocyte implantation (HD-ACI) in the first 50 patients with knee cartilage damage treated in our unit.
Design: Fifty consecutive patients with cartilage lesions (Outerbridge grade III-IV) in the knee treated with HD-ACI were included in this study. Chondrocytes were isolated from a nonbearing cartilage area biopsy and were cultured until 40 to 50 million cells were obtained.
Objective: To study if a culture of chondrocytes can be obtained from pathologic hyaline cartilage (PHC) fragments.
Design: Twenty-five men and 9 women with osteochondritis dissecans (OCD) in 11 cases, arthrosis in 13 patients, and trauma in the remaining 10 cases were included. The PHC fragments and a small sample of the next healthy cartilage were extracted by arthroscopy.
Background: We hypothesized that implanting cells in a chondral defect at a density more similar to that of the intact cartilage could induce them to synthesize matrix with the features more similar to that of the uninjured one.
Methods: We compared the implantation of different doses of chondrocytes: 1 million (n = 5), 5 million (n = 5), or 5 million mesenchymal cells (n = 5) in the femoral condyle of 15 sheep. Tissue generated by microfracture at the trochlea, and normal cartilage from a nearby region, processed as the tissues resulting from the implantation, were used as references.