Ixr1 is a Saccharomyces cerevisiae HMGB protein that regulates the hypoxic regulon and also controls the expression of other genes involved in the oxidative stress response or re-adaptation of catabolic and anabolic fluxes when oxygen is limiting. Ixr1 also binds with high affinity to cisplatin-DNA adducts and modulates DNA repair. The influence of Ixr1 on transcription in the absence or presence of cisplatin has been analyzed in this work.
View Article and Find Full Text PDFSky1 is the only member of the SR (Serine-Arginine) protein kinase family in Saccharomyces cerevisiae. When yeast cells are treated with the anti-cancer drug cisplatin, Sky1 kinase activity is necessary to produce the cytotoxic effect. In this study, proteome changes in response to this drug and/or SKY1 deletion have been evaluated in order to understand the role of Sky1 in the response of yeast cells to cisplatin.
View Article and Find Full Text PDFCisplatin is commonly used in cancer therapy and yeast cells are also sensitive to this compound. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin treatment, which are dependent on or independent of SKY1 function--a gene whose deletion increases resistance to the drug. Gene expression changes produced by addition of cisplatin to W303 and W303-Δsky1 cells were recorded using DNA microarrays.
View Article and Find Full Text PDFRecent advances in the knowledge of molecular mechanisms that control the adaptation to low oxygen levels in yeast and their biotechnological applications, including bioproduct synthesis, such as ethanol, glutathione or recombinant proteins, as well as pathogenic virulence, are reviewed. Possible pathways and target genes, which might be of particular interest for the improvement of biotechnological applications, are evaluated.
View Article and Find Full Text PDFStudies about hypoxia-induced oxidative stress in human health disorders take advantage from the use of unicellular eukaryote models. A widely extended model is the fermentative yeast Saccharomyces cerevisiae. In this paper, we describe an overview of the molecular mechanisms induced by a decrease in oxygen availability and their interrelationship with the oxidative stress response in yeast.
View Article and Find Full Text PDFThe yeast Saccharomyces cerevisiae has been previously used as a model eukaryotic system to identify genes related to drug resistance. Deletion of the IXR1 gene increases resistance to cisplatin, and deletion of the SKY1 gene increases resistance to cisplatin and spermine. Three S.
View Article and Find Full Text PDFβ-Galactosidase or lactase is a very important enzyme in the food industry, being that from the yeast Kluyveromyces lactis the most widely used. Here we report its three-dimensional structure both in the free state and complexed with the product galactose. The monomer folds into five domains in a pattern conserved with the prokaryote enzymes of the GH2 family, although two long insertions in domains 2 and 3 are unique and related to oligomerization and specificity.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae, adaptation to hypoxia/anaerobiosis requires the transcriptional induction or derepression of multiple genes organized in regulons controlled by specific transcriptional regulators. Ixr1p is a transcriptional regulatory factor that causes aerobic repression of several hypoxic genes (COX5B, TIR1, and HEM13) and also the activation of HEM13 during hypoxic growth. Analysis of the transcriptome of the wild-type strain BY4741 and its isogenic derivative Δixr1, grown in aerobic and hypoxic conditions, reveals differential regulation of genes related not only to the hypoxic and oxidative stress responses but also to the re-adaptation of catabolic and anabolic fluxes in response to oxygen limitation.
View Article and Find Full Text PDFTwo proteins that differ at the N terminus (l-KlCpo and s-KlCpo) are derived from KlHEM13, a single-copy-number gene in the haploid genome of Kluyveromyces lactis. Two transcriptional start site (tss) pools are detectable using primer extension, and their selection is heme dependent. One of these tss pools is located 5' of the first translation initiation codon (TIC) in the open reading frame of KlHEM13, while the other is located between the first and second TICs.
View Article and Find Full Text PDFTwo N-terminally truncated variants of the esterase E34Tt from Thermus thermophilus HB27 (YP_004875.1) were expressed in Kluyveromyces lactis. Production and biochemical properties of both recombinant proteins were investigated.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
March 2010
Beta-galactosidase from Kluyveromyces lactis catalyses the hydrolysis of the beta-galactosidic linkage in lactose. Owing to its many industrial applications, the biotechnological potential of this enzyme is substantial. This protein has been expressed in yeast and purified for crystallization trials.
View Article and Find Full Text PDFIn this work, a system for high-level secretion by Saccharomyces cerevisiae of the Thermus thermophilus HB27 putative esterase YP_004875.1 was constructed. The recombinant protein was purified and partially characterised.
View Article and Find Full Text PDFIxr1p from Saccharomyces cerevisiae has been previously studied because it binds to DNA containing intrastrand cross-links formed by the anticancer drug cisplatin. Ixr1p is also a transcriptional regulator of anaerobic/hypoxic genes, such as SRP1/TIR1, which encodes a stress-response cell wall manoprotein, and COX5B, which encodes the Vb subunit of the mitochondrial complex cytochrome c oxidase. However, factors controlling IXR1 expression remained unexplored.
View Article and Find Full Text PDFA lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies.
View Article and Find Full Text PDFThe function of KlSRB10 has been studied by diverse approaches. Primer extension analysis reveals several transcription start sites, position - 17 from ATG being predominant. Deletion of KlSRB10 diminishes growth in ethanol and decreases KlCYC1 transcript levels.
View Article and Find Full Text PDFGenome duplication, after the divergence of Saccharomyces cerevisiae from Kluyveromyces lactis along evolution, has been proposed as a mechanism of yeast evolution from strict aerobics, such as Candida albicans, to facultatives/fermentatives, such as S. cerevisiae. This feature, together with the preponderance of respiration and the use of the pentose phosphate pathway in glucose utilization, makes K.
View Article and Find Full Text PDFThe mitochondria of the respiratory yeast Kluyveromyces lactis are able to reoxidize cytosolic NADPH. Previously, we characterized an external alternative dehydrogenase, KlNde1p, having this activity. We now characterize the second external alternative dehydrogenase of K.
View Article and Find Full Text PDFThe KlHEM13 gene of Kluyveromyces lactis encoding the coproporphyrinogen oxidase (EC 1.3.3.
View Article and Find Full Text PDFThe use of heterologous DNA arrays from Saccharomyces cerevisiae has been tested and revealed as a suitable tool to compare the transcriptomes of S. cerevisiae and Kluyveromyces lactis, two yeasts with notable differences in their respirofermentative metabolism. The arrays have also been applied to study the changes in the K.
View Article and Find Full Text PDFCloning and transcriptional regulation of the KlFBA1 gene that codes for the class II fructose-1,6-bisphosphate aldolase of the yeast Kluyveromyces lactis are described. KlFBA1 mRNA diminishes transiently during the shift from hypoxic to fully aerobic conditions and increases in the reversal shift. This regulation is mediated by heme since expression was higher in a mutant defective in heme biosynthesis.
View Article and Find Full Text PDFCloning, sequencing and functional analysis of the Kluyveromyces lactis KlHEM12 gene and its upstream region are reported. The gene encodes for a protein that is highly homologous to uroporphyrinogen decarboxylases from different organisms and complements its mutation in Saccharomyces cerevisiae. Secondary structure prediction allows outlining a topology diagram which is compatible with a (beta/alpha)8-barrel structure.
View Article and Find Full Text PDFSecretion of the heterologous Kluyveromyces lactis beta-galactosidase into culture medium by several Saccharomyces cerevisiae osmotic-remedial thermosensitive-autolytic mutants was assayed and proved that new metabolic abilities were conferred since the constructed strains were able to grow in lactose-containing media. Cell growth became independent of a lactose-uptake mechanism. Higher levels of extra-cellular and intra-cellular beta-galactosidase production, lactose consumption and growth were obtained with the LHDP1 strain, showing a thermosensitive-autolytic phenotype as well as being peptidase-defective.
View Article and Find Full Text PDFThis study investigated the effects of the natural polyphenol mangiferin (MA) on superoxide anion (O(2)(-)) production, xanthine oxidase (XO) activity, vascular contractility, inducible nitric oxide synthase (iNOS) mRNA levels, tumour necrosis factor-alpha (TNF-alpha) mRNA levels, and tumour growth factor-beta (TGF-beta) mRNA levels. O(2)(-) was generated by the hypoxanthine-xanthine oxidase (HX-XO) and phenazine methosulphate (PMS)-NADH systems. XO activity was determined by measurement of uric acid production with xanthine as substrate.
View Article and Find Full Text PDF