Publications by authors named "Isabel Forner-Piquer"

The endocannabinoid system (ECS) is a lipid signaling system involved in numerous physiological processes, such as endocrine homeostasis, appetite control, energy balance, and metabolism. The ECS comprises endocannabinoids, their cognate receptors, and the enzymatic machinery that tightly regulates their levels within tissues. This system has been identified in various organs, including the brain and liver, in multiple mammalian and non-mammalian species.

View Article and Find Full Text PDF

We present a comprehensive overview of changes in thyroxine (T4) and thyroid stimulating hormone (TSH) serum concentrations after pre-gestational, gestational and/or lactation exposures of rodents to various chemicals that affect the thyroid hormone system. We show that T4 and TSH changes consistent with the idealized view of the hypothalamic-pituitary-thyroid (HPT) feedback loop (T4 decrements accompanied by TSH increases) are observed with only a relatively small set of chemicals. Most substances affect concentrations of various thyroid hormones without increasing TSH.

View Article and Find Full Text PDF

Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks.

View Article and Find Full Text PDF

Di-isononyl phthalate (DiNP) is a plasticizer reported to elicit hormone-like activity and disrupt metabolism and reproduction in fish and other vertebrates. In general, phthalates have been used at high concentrations beyond reported environmental levels to assess their adverse effects on fish gonadal physiology. The present study exposed adult female zebrafish to a wide range of DiNP concentrations [0.

View Article and Find Full Text PDF

Epidemiological indications connect maternal and developmental presence or exposure to pesticides with an increased risk for a spectrum of neurological trajectories. To provide pre-clinical data in support of this hypothesis, we used two distinct experimental models. First, female and male mice were fed immediately prior to mating, and the resulting pregnant dams were continously fed during gestation and lactation periods using chow pellets containing a cocktail of six pesticides at tolerable daily intake levels.

View Article and Find Full Text PDF

The presence of glyphosate represents a debated ecotoxicological and health risk factor. Here, zebrafish larvae were exposed, from 1.5 to 120 h post-fertilization, to a broad concentration range (0.

View Article and Find Full Text PDF

Xenobiotic nuclear receptors (NR) are intracellular players involved in an increasing number of physiological processes. Examined and characterized in peripheral organs where they govern metabolic, transport and detoxification mechanisms, accumulating data suggest a functional expression of specific NR at the neurovascular unit (NVU). Here, we focus on the Constitutive Androstane Receptor (CAR), expressed in detoxifying organs such as the liver, intestines and kidneys.

View Article and Find Full Text PDF

Exposure to environmental contaminants is a public health concern. However, pre-clinical studies that examine the impact of pesticides at low-dose and the long-term consequences are uncommon. Here, C57BL6/j male and female mice were daily fed from weaning and up to 12 months, corresponding to early-childhood into middle-age in humans, using chow pellets containing a cocktail of pesticides at tolerable daily intake levels.

View Article and Find Full Text PDF

Bisphenol A (BPA), a monomer used for polycarbonate manufacture, has been widely reported as an endocrine-disrupting chemical (EDC). Among other alterations, BPA induces reproductive dysfunctionalities. Changes in the endocannabinoid system (ECS) have been recently shown to be associated with reproductive disorders.

View Article and Find Full Text PDF

Bisphenol A (BPA), a known endocrine disrupting chemical (EDC), was administered by diet to gilthead sea bream () in order to study its effects on the endocannabinoid system (ECS) and gonadal steroidogenesis. 2-year-old male gilthead sea bream were fed with two different concentrations of BPA (LOW at 4 and HIGH at 4000 µg/kg body weight for 21 days during the reproductive season. Exposure to 4000 µg BPA/kg bw/day (BPA HIGH) reduced sperm motility and altered the straight-line velocity (VSL) and linearity (LIN).

View Article and Find Full Text PDF

In this study, adult gilthead seabream (Sparus aurata) were exposed for 21 days to Di-iso-nonylphthalte (DiNP at 15 and 1500 μg kg bw day) via the diet. This plastic additive has been recently introduced to replace the di-(2-ethylhexyl)phthalate, the toxicity of which has been demonstrated conclusively both in vivo and in vitro trials. An analysis of a set of biomarkers involved in stress and immune response provides evidence of hepatic toxicity by DiNP in the present study.

View Article and Find Full Text PDF

Diisononyl phthalate (DiNP) is a plasticizer used to improve plastic performance in a large variety of items which has been reported as an endocrine-disrupting chemical (EDC) in several organisms. The endocannabinoid system (ECS) is a cellular signaling system, whose functionality is tightly involved with reproductive function. The aim of the present study was the assessment of the effects of DiNP on the gonadal ECS and on the reproductive function of male gilthead sea bream Sparus aurata, an important marine aquacultured species in Europe, during the reproductive season.

View Article and Find Full Text PDF

In the last years, an increasing number of studies reported that food pollution represents a significant route of exposure to environmental toxicants, able to cause mild to severe food illnesses and health problems, including hormonal and metabolic diseases. Pollutants can accumulate in organisms and biomagnify along the food web, finally targeting top consumers causing health and economic problems. In this study, adults of gilthead sea bream, Sparus aurata, were fed with diets contaminated with Bisphenol A (BPA) (4 and 4000 μg BPA kg bw day) and Di-isononyl phthalate (DiNP) (15 and 1500 μg DiNP kg bw day), to evaluate the effects of the contamination on the muscle macromolecular composition and alterations of its texture.

View Article and Find Full Text PDF

Over the past 25 years, extensive research in vertebrate species has identified several genomic pathways altered by exposures to anthropogenic chemicals with hormone-like activity mediated by their interaction with nuclear receptors. In addition, many pollutants have been shown to interfere with non-genomic (non-classical) pathways, but this mechanism of endocrine disruption is still poorly understood. Recently, the number of publications describing the effects of Endocrine disrupting chemicals (EDCs) on fish reproduction, focusing on the deregulation of the hypothalamus-pituitary-gonadal axis as well as on gamete quality, significantly increased.

View Article and Find Full Text PDF

The increasing manufacture of plastics and their mismanagement has turned plastic into a ubiquitous waste in the marine environment. Among all the substances conforming the plastic items, the effects of a dietary Bisphenol A (BPA) and Di-isononyl phthalate (DiNP) have been evaluated in adult male gilthead sea bream, focusing on their effects in the modulation of the Endocannabinoid System (ECS). In zebrafish, the ECS has been recently chosen as a new target for the activity of some Endocrine Disrupting Chemicals (EDC), since it represents a complex lipid signaling network essential for the well-being of the organisms.

View Article and Find Full Text PDF

DiNP (Di-isononyl phthalate) has been recently introduced as DEHP (Bis (2-ethylhexyl) phthalate) substitute and due to its chemical properties, DiNP is commonly used in a large variety of plastic items. The endocannabinoid system (ECS) is a lipid signaling system involved in a plethora of physiological pathways including the control of the reproductive and metabolic processes. In this study, the effects of DiNP on the ECS of zebrafish (male and female) gonads were analyzed.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) are known to disrupt normal metabolism and can influence the incidence of obesity in animals and humans. EDCs can exert adverse effects at low concentrations, often in a non-monotonic dose-related fashion. Among EDCs, Bisphenol A (BPA) is extensively used in the production of polycarbonate plastic, and is among the most abundant contaminants in the world.

View Article and Find Full Text PDF

Bisphenol A (BPA), a widely used chemical to produce polycarbonate plastics, has become an ubiquitous pollutant due to its extensive use. Its endocrine disrupting properties have been documented in several studies, as well as its potential to induce metabolic and reproductive impairments at environmentally relevant concentrations. Recent insights highlighted the role of the Endocannabinoid System (ECS) in energy homeostasis and lipid metabolism.

View Article and Find Full Text PDF

Phthalates, used as plasticizers, have become a ubiquitous contaminant and have been reported for their potential to induce toxicity in living organisms. Among them, di-isononyl phthalate (DiNP) has been recently used to replace di(2-ethylhexyl) phthalate (DEHP). Nowadays, there is evidence that DiNP is an endocrine-disrupting chemical; however, little is known about its effects on the endocannabinoid system (ECS) and lipid metabolism.

View Article and Find Full Text PDF

Di-isononyl phthalate (DiNP) is a high molecular weight phthalate commonly used as a plasticizer. It was introduced as a replacement for bis (2-ethylhexyl) phthalate (DEHP) which is used in the production of plasticized polyvinyl chloride (PVC). The purpose of this study was to investigate for the first time the effect of DiNP on female reproductive physiology in Danio rerio.

View Article and Find Full Text PDF

This investigation is aimed to improve the knowledge on the physiological alterations occurring at morphological and molecular level in European sea bass naturally infected by A. ocellatum and reared at different salinities. European sea bass juveniles (Dicentrarchus labrax) weighing 20 ± 0.

View Article and Find Full Text PDF