Betacoronavirus (β-CoV) are positive single-stranded RNA viruses known to infect mammals. In 2019, a novel zoonotic β-CoV emerged, the severe acute respiratory syndrome (SARS)-CoV-2. Although the most frequent SARS-CoV-2 transmission route is within humans, spillover from humans to domestic and wild animals has been reported, including cats (), dogs (), and minks ().
View Article and Find Full Text PDFSeveral clinical trials are exploring therapeutic effect of human CD34(+) cells in ischemic diseases, including myocardial infarction. Unfortunately, most of the cells die few days after delivery. Herein we show that lysophosphatidic acid (LPA)-treated human umbilical cord blood-derived CD34(+) cells cultured under hypoxic and serum-deprived conditions present 2.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
October 2011
Recent pre-clinical and clinical studies indicate that certain exogenous stem cells and biomaterials can preserve cardiac tissue after myocardial infarction. Regarding stem cells, a growing body of data suggests that the short-term positive outcomes are mainly attributed to paracrine signaling mechanisms. The release of such factors is due to the cell's ability to sense cardiac environmentally derived cues, though the exact feedback loops are still poorly understood.
View Article and Find Full Text PDFIn this study, we developed a methodology to improve the survival, vascular differentiation and regenerative potential of umbilical cord blood (UCB)-derived hematopoietic stem cells (CD34(+) cells), by co-culturing the stem cells in a 3D fibrin gel with CD34(+)-derived endothelial cells (ECs). ECs differentiated from CD34(+) cells appear to have superior angiogenic properties to fully differentiated ECs, such as human umbilical vein endothelial cells (HUVECs). Our results indicate that the pro-survival effect of CD34(+)-derived ECs on CD34(+) cells is mediated, at least in part, by bioactive factors released from ECs.
View Article and Find Full Text PDFEIAV is a monocyte/macrophage tropic virus. To date, even though EIAV has been under investigation for numerous years, very few details have been elucidated about EIAV/macrophage interactions. This is largely due to the absence of an equine macrophage cell line that would support viral replication.
View Article and Find Full Text PDF