Publications by authors named "Isabel D Alves"

The neuropeptide-Y (NPY) family acts through four G protein-coupled receptor subtypes in humans, namely, Y, Y, Y, and Y. A growing body of evidence suggest the involvement of the NPY system in several cancers, notably the Y subtype, thus acting as a relevant target for the development of radiopharmaceuticals for imaging or targeted radionuclide therapy (TRT). Here, the [cPP(1-7),NPY(19-23),Ala,Aib,Gln]hPP scaffold, further referred to as sYago, was modified with a DOTA chelator and radiolabeled with Ga and In and investigated and using the MCF-7 model.

View Article and Find Full Text PDF

Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms.

View Article and Find Full Text PDF
Article Synopsis
  • The lipid composition of cell membranes can be altered by aging, diseases, diets, and other factors, notably affecting individuals with psychiatric disorders like schizophrenia, where polyunsaturated fatty acids (PUFAs) are often depleted.
  • This deprivation of PUFAs serves as a biomarker for these disorders and can influence the effectiveness of antipsychotic medications through its impact on receptor interaction and signaling in the membranes.
  • The study used various biophysical techniques to explore how changes in PUFA levels affect membrane properties such as fluidity, elasticity, thickness, and overall structure, revealing that PUFAs enhance fluidity and flexibility while reducing thickness.
View Article and Find Full Text PDF

Several biochemical and biophysical methods are available to determine ligand binding affinities between a biological target and its ligands, most of which require purification, labelling or surface immobilisation. These measurements, however, remain challenging in regards to membrane proteins, as purification processes require their extraction from their native lipid environment, which may in turn impact receptor conformation and functionality. In this study, we have developed a novel experimental procedure using microscale thermophoresis (MST) directly from cell membrane fragments, to determine different ligand binding affinities to a membrane protein, the dopamine D2 receptor (D2R).

View Article and Find Full Text PDF

G protein coupled receptors (GPCRs) are a class of membrane proteins that sense extracellular signals ranging from light to odorants and small molecules and activate intracellular signaling pathways that control important physiological responses. Being composed of 7 transmembrane helices linked by extracellular and intracellular loops, the great majority of the sequence of these receptors is embedded in the lipid membrane. Therefore, it is expected GPCR structure and function to be impacted by the surrounding lipid environment and the lipid membrane physico-chemical and mechanical properties.

View Article and Find Full Text PDF

Plasmon waveguide resonance (PWR) is a variant of surface plasmon resonance (SPR) that was invented about two decades ago at the University of Arizona. In addition to the characterization of the kinetics and affinity of molecular interactions, PWR possesses several advantages relative to SPR, namely, the ability to monitor both mass and structural changes. PWR allows anisotropy information to be obtained and is ideal for the investigation of molecular interactions occurring in anisotropic-oriented thin films.

View Article and Find Full Text PDF

The study of G-protein-coupled receptor (GPCR ) mechanisms of activation and signaling often the isolation, purification, and reconstitution of GPCRs in model lipid membranes. GPCR reconstitution from a detergent-micelle system into model membranes is usually a laborious process whose success is tested after the whole process is over by rather indirect methods such as SDS-PAGE and western blotting or by biophysical approaches. Following that, protein activity is measured in yet a different experimental setup.

View Article and Find Full Text PDF

Background: Targeting G protein-coupled receptors on the surface of cancer cells with peptide ligands is a promising concept for the selective tumor delivery of therapeutically active cargos, including radiometals for targeted radionuclide therapy (TRT). Recently, the radiolanthanide terbium-161 (Tb) gained significant interest for TRT application, since it decays with medium-energy β-radiation but also emits a significant amount of conversion and Auger electrons with short tissue penetration range. The therapeutic efficiency of radiometals emitting Auger electrons, like Tb, can therefore be highly boosted by an additional subcellular delivery into the nucleus, in order to facilitate maximum dose deposition to the DNA.

View Article and Find Full Text PDF

The biophysical characterisation of membrane proteins and their interactions with lipids in native membrane habitat remains a major challenge. Indeed, traditional solubilisation procedures with detergents often causes the loss of native lipids surrounding membrane proteins, which ultimately impacts structural and functional properties. Recently, copolymer-based nanodiscs have emerged as a highly promising tool, thanks to their unique ability of solubilising membrane proteins directly from native membranes, in the shape of discoidal patches of lipid bilayers.

View Article and Find Full Text PDF

The chemokine CCR5 receptor is target of maraviroc, a negative allosteric modulator of CCR5 that blocks the HIV protein gp120 from associating with the receptor, thereby inhibiting virus cellular entry. As noted with other G-protein-coupled receptor family members, the role of the lipid environment in CCR5 signaling remains obscure and very modestly investigated. Controversial literature on the impact of cholesterol (Chol) depletion in HIV infection and CCR5 signaling, including the hypothesis that Chol depletion could inhibit HIV infection, lead us to focus on the understanding of Chol impact in the first stages of receptor activation.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) internalization occurs both by endocytosis and direct translocation through the cell membrane. These different entry routes suggest that molecular partners at the plasma membrane, phospholipids or glycosaminoglycans (GAGs), bind CPPs with different affinity or selectivity. The analysis of sequence-dependent interactions of CPPs with lipids and GAGs should lead to a better understanding of the molecular mechanisms underlying their internalization.

View Article and Find Full Text PDF

Microvesicles (MVs) are used by various types of cells in the human body for intercellular communication, making them biomarkers of great potential for the early and non-evasive diagnosis of a spectrum of diseases. An integrated analysis including morphological, quantitative, and compositional studies is most desirable for the clinical application of MV detection; however, such integration is limited by the currently available analysis techniques. In this context, exploiting the phosphatidylserine (PS) exposure of MVs, we synthesized a series of dendritic molecules with PS-binding sites at the periphery.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are short peptides that can translocate and transport cargoes into the intracellular milieu by crossing biological membranes. The mode of interaction and internalization of cell-penetrating peptides has long been controversial. While their interaction with anionic membranes is quite well understood, the insertion and behavior of CPPs in zwitterionic membranes, a major lipid component of eukaryotic cell membranes, is poorly studied.

View Article and Find Full Text PDF

Background: We previously reported the identification of the aapA1/IsoA1 locus as part of a new family of toxin-antitoxin (TA) systems in the human pathogen Helicobacter pylori. AapA1 belongs to type I TA bacterial toxins, and both its mechanism of action towards the membrane and toxicity features are still unclear.

Methods: The biochemical characterization of the AapA1 toxic peptide was carried out using plasmid-borne expression and mutational approaches to follow its toxicity and localization.

View Article and Find Full Text PDF

The transient receptor potential ankyrin 1 (TRPA1) channel is a polymodal sensor of environmental irritant compounds, endogenous proalgesic agents, and cold. Upon activation, TRPA1 channels increase cellular calcium levels via direct permeation and trigger signaling pathways that hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP ) in the inner membrane leaflet. Our objective was to determine the extent to which a putative PIP -interaction site (Y1006-Q1031) is involved in TRPA1 regulation.

View Article and Find Full Text PDF

Membrane-active peptides include a variety of molecules such as antimicrobial (AMP), cell-penetrating (CPP), viral, and amyloid peptides that are implicated in several pathologies. They constitute important targets because they are either at the basis of novel therapies (drug delivery for CPPs or antimicrobial activity for AMPs) or they are the agents causing these pathologies (viral and amyloid peptides). They all share the common property of interacting with the cellular lipid membrane in their mode of action.

View Article and Find Full Text PDF

Plasmon waveguide resonance (PWR) sensors exhibit narrow resonances at the two orthogonal polarizations, transverse electric (TE) and transverse magnetic (TM), which are narrower by almost an order of a magnitude than the standard surface plasmon resonance (SPR), and thus the figure of merit is enhanced. This fact is useful for measuring optical anisotropy of materials on the surface and determining the orientation of molecules with high resolution. Using the diverging beam approach and a liquid crystal retarder, we present experimental results by simultaneous detection of TE and TM polarized resonances as well as using fast higher contrast serial detection with a variable liquid crystal retarder.

View Article and Find Full Text PDF

Here we describe an experimental technique, termed plasmon waveguide resonance (PWR) spectroscopy that enables the characterization of molecular interactions occurring at the level of anisotropic thin films as lipid membranes and therein inserted or interacting molecules. PWR allows one to characterize such molecular interactions at different levels: (1) acquire binding curves and calculate dissociation constants; (2) obtain kinetic information; (3) obtain information about associated anisotropy changes and changes in membrane thickness; (4) obtain insight about lateral homogeneity (formation of domains). Points 1, 2, and 4 can be directly obtained from the data.

View Article and Find Full Text PDF

This paper describes a simple procedure to determine the local thickness of a thin anisotropic layer. It also discriminates between isotropic and anisotropic regions, provided a smoothness hypothesis on the refractive index distribution is satisfied. The procedure is based on the analysis of surface plasmon resonance (SPR) data acquired in an imaging mode.

View Article and Find Full Text PDF

CXCR3 plays important roles in angiogenesis, inflammation, and cancer. However, the precise mechanism of regulation and activity in tumors is not well known. We focused on CXCR3-A conformation and on the mechanisms controlling its activity and trafficking and investigated the role of CXCR3/LRP1 cross talk in tumor cell invasion.

View Article and Find Full Text PDF

CXCL4 chemokines have antiangiogenic properties, mediated by different mechanisms, including CXCR3 receptor activation. Chemokines have distinct oligomerization states that are correlated with their biological functions. CXCL4 exists as a stable tetramer under physiological conditions.

View Article and Find Full Text PDF

Penetratin (RQIKIWFQNRRMKWKK) enters cells by different mechanisms, including membrane translocation, thus implying that the peptide interacts with the lipid bilayer. Penetratin also crosses the membrane of artificial vesicles, depending on their phospholipid content. To evaluate the phospholipid preference of penetratin, as the first step of translocation, we exploited the benzophenone triplet kinetics of hydrogen abstraction, which is slower for secondary than for allylic hydrogen atoms.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) are important therapeutic targets since more than 40% of the drugs on the market exert their action through these proteins. To decipher the molecular mechanisms of activation and signaling, GPCRs often need to be isolated and reconstituted from a detergent-solubilized state into a well-defined and controllable lipid model system. Several methods exist to reconstitute membrane proteins in lipid systems but usually the reconstitution success is tested at the end of the experiment and often by an additional and indirect method.

View Article and Find Full Text PDF