Publications by authors named "Isabel C Barrio"

Article Synopsis
  • Northern herbivores significantly impact tundra ecosystems, but the effects of herbivore diversity on these ecosystems have been largely overlooked, especially with ongoing climate and land-use changes.
  • This systematic review analyzed numerous studies (201 articles and over 3700 individual comparisons) to understand how different levels of herbivore diversity (measured by functional group richness) influence ecosystem processes and functions in the tundra.
  • The findings highlight a concentrated body of research from specific locations, emphasizing the need for more comprehensive studies across diverse Arctic regions to grasp the full effects of herbivore diversity on ecosystem functionality.
View Article and Find Full Text PDF
Article Synopsis
  • * Sites with warmer, wetter conditions and more species generally saw increased biomass, while arid, species-poor areas experienced declines, alongside notable changes in seasonal plant growth patterns.
  • * Factors like grazing and nutrient input didn't consistently predict biomass changes, indicating that grasslands are undergoing substantial transformations that could affect food security, biodiversity, and carbon storage, particularly in dry regions.
View Article and Find Full Text PDF

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI).

View Article and Find Full Text PDF

Changes in wild and domestic herbivore populations significantly impact extensive grazing systems, particularly in low productive environments, where increasing wild herbivore populations are perceived as a threat to farming. To assess the magnitude of these changes in Iceland, we compiled time series on herbivore populations from 1986 to 2020 and estimated changes in species densities, metabolic biomass, and consumption of plant biomass in improved lands and unimproved rangelands. We compared estimates of consumption rates to past and present net primary production.

View Article and Find Full Text PDF

Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness).

View Article and Find Full Text PDF

The contribution of herbivores to ecosystem nutrient fluxes through dung deposition has the potential to, directly and indirectly, influence ecosystem functioning. This process can be particularly important in nutrient-limited ecosystems such as alpine systems. However, herbivore dung content (carbon, C; nitrogen, N; phosphorus, P; potassium, K) and stoichiometry (C/N) may differ among species due to differences in diet, seasonality, body type, feeding strategy, and/or digestive system with consequences for soil biogeochemistry.

View Article and Find Full Text PDF

Plants have demonstrated tremendous resilience through past mass extinction events. However, anthropogenic pressures are rapidly threatening plant survival. To develop our understanding of the impact of environmental change on plant ecology and evolution and help solve the current biodiversity crisis, BMC Ecology and Evolution has launched a new article Collection titled "Plants under Pressure".

View Article and Find Full Text PDF

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance.

View Article and Find Full Text PDF

Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach.

View Article and Find Full Text PDF

Ecological models predict that the effects of mammalian herbivore exclusion on plant diversity depend on resource availability and plant exposure to ungulate grazing over evolutionary time. Using an experiment replicated in 57 grasslands on six continents, with contrasting evolutionary history of grazing, we tested how resources (mean annual precipitation and soil nutrients) determine herbivore exclusion effects on plant diversity, richness and evenness. Here we show that at sites with a long history of ungulate grazing, herbivore exclusion reduced plant diversity by reducing both richness and evenness and the responses of richness and diversity to herbivore exclusion decreased with mean annual precipitation.

View Article and Find Full Text PDF

Rangeland ecosystems are changing worldwide with the abandonment of extensive pastoralism practices and greater interest for species coexistence. However, the lack of compiled data on current changes in the abundance and distribution of herbivores challenges rangeland management decisions. Here we gathered and made available for the first time the most extensive set of occurrence data for rangeland herbivores in Iceland in an Open Access framework for transparent and repeatable science-based decisions.

View Article and Find Full Text PDF

Background: Changes in the diversity of herbivore communities can strongly influence the functioning of northern ecosystems. Different herbivores have different impacts on ecosystems because of differences in their diets, behaviour and energy requirements. The combined effects of different herbivores can in some cases compensate each other but lead to stronger directional changes elsewhere.

View Article and Find Full Text PDF
Article Synopsis
  • Research discusses how current global climate models are based on air temperatures but fail to capture the soil temperatures beneath vegetation where many species thrive.
  • New global maps present soil temperature and bioclimatic variables at 1-km resolution for specific depths, revealing that mean annual soil temperatures can differ significantly from air temperatures by up to 10°C.
  • The findings indicate that relying on air temperature could misrepresent climate impacts on ecosystems, especially in colder regions, highlighting the need for more precise soil temperature data for ecological studies.
View Article and Find Full Text PDF

Poleward shifts in species distributions are expected and frequently observed with a warming climate. In Arctic ecosystems, the strong warming trends are associated with increasing greenness and shrubification. Vertebrate herbivores have the potential to limit greening and shrub advance and expansion on the tundra, posing the question of whether changes in herbivore communities could partly mediate the impacts of climate warming on Arctic tundra.

View Article and Find Full Text PDF

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cA , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.

View Article and Find Full Text PDF

Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.

View Article and Find Full Text PDF

The terrestrial chapter of the Circumpolar Biodiversity Monitoring Programme (CBMP) has the potential to bring international multi-taxon, long-term monitoring together, but detailed fundamental species information for Arctic arthropods lags far behind that for vertebrates and plants. In this paper, we demonstrate this major challenge to the CBMP by focussing on spiders (Order: Araneae) as an example group. We collate available circumpolar data on the distribution of spiders and highlight the current monitoring opportunities and identify the key knowledge gaps to address before monitoring can become efficient.

View Article and Find Full Text PDF

The Circumpolar Biodiversity Monitoring Programme (CBMP) provides an opportunity to improve our knowledge of Arctic arthropod diversity, but initial baseline studies are required to summarise the status and trends of planned target groups of species known as Focal Ecosystem Components (FECs). We begin this process by collating available data for a relatively well-studied region in the Arctic, the North Atlantic region, summarising the diversity of key terrestrial arthropod FECs, and compiling trends for some representative species. We found the FEC classification system to be challenging to implement, but identified some key groups to target in the initial phases of the programme.

View Article and Find Full Text PDF

Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases toward the equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660-kilometer latitudinal gradient spanning six continents, we found increasing predation toward the equator, with a parallel pattern of increasing predation toward lower elevations.

View Article and Find Full Text PDF

In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months.

View Article and Find Full Text PDF

Arctic warming is resulting in reduced snow cover and increased shrub growth, both of which have been associated with altered land surface-atmospheric feedback processes involving sensible heat flux, ground heat flux and biogeochemical cycling. Using field measurements, we show that two common Arctic shrub species (Betula glandulosa and Salix pulchra), which are largely responsible for shrub encroachment in tundra, differed markedly in albedo and that albedo of both species increased as growing season progressed when measured at their altitudinal limit. A moveable apparatus was used to repeatedly measure albedo at six precise spots during the summer of 2012, and resampled in 2013.

View Article and Find Full Text PDF

Interactions among herbivores can shape the structure of their communities and drive their dynamics. However, detecting herbivore interactions can be challenging when they are deferred in space or time. Moreover, interactions among distantly related groups of herbivores, such as vertebrates and invertebrates, are poorly understood.

View Article and Find Full Text PDF