Publications by authors named "Isabel Barroso-Martin"

Five phyllosilicates (kaolinite, montmorillonite, saponite, sepiolite and palygorskite) have been selected as starting materials for the synthesis of zeolites. Among them, kaolinite and montmorillonite display the lowest Si/Al molar ratio leading to aluminosilicates with high crystallinity. Thus, the hydrothermal treatment under basic conditions forms 4A zeolite when kaolinite is used as starting material while 13X zeolite is obtained when montmorillonite is used as starting material.

View Article and Find Full Text PDF

Environmental pollution is a complex problem that threatens the health and life of animal and plant ecosystems on the planet. In this respect, the scientific community faces increasingly challenging tasks in designing novel materials with beneficial properties to address this issue. This study describes a simple yet effective synthetic protocol to obtain nickel hexacyanoferrate (Ni-HCF) nanocubes as a suitable photocatalyst, which can enable an efficient photodegradation of hazardous anthropogenic organic contaminants in water, such as antibiotics.

View Article and Find Full Text PDF

The global demand for energy and industrial growth has generated an exponential use of fossil fuels in recent years. It is well known that carbon dioxide (CO) is mainly produced, but not only from fuels, which has a negative impact on the environment, such as the increasing emission of greenhouse gases. Thus, thinking about reducing this problem, this study analyzes microwave irradiation as an alternative to conventional heating to optimize zeolite A synthesis conditions for CO capture.

View Article and Find Full Text PDF

Three chitosans with different morphologies have been used (commercial chitosan powder, chitosan in film form and chitosan in globular form synthesized by the freeze-dried method) for the synthesis of biochars. The pyrolytic treatment has revealed that the biochar synthesized from the chitosan formed by the freeze-dried method reaches the highest CO-adsorption capacity (4.11 mmol/g at 0 °C and a pressure of 1 bar) due to this adsorbent is highly microporous.

View Article and Find Full Text PDF

The effect of adding iron, cobalt or nickel to a prepared niobium-supported catalyst using mesoporous silica SBA-15 as a support was evaluated in the hydrodeoxygenation (HDO) reaction of anisole, chosen as a model compound in lignocellulosic biomass derived bio-oil. HDO activity as well as selectivity toward O-free products were highly dependent on the catalyst formulation: Ni incorporation showed the highest anisole conversion and selectivity to deoxygenated products, followed by Co and Fe counterparts. The activity was explained in terms of acidity, metal surface exposure and reducibility as a function of the interaction between the phases present.

View Article and Find Full Text PDF

In this work, SBA-15 silica and silica-titania have been used as supports for photocatalysts based on AuCu alloy (Au:Cu = 1) to be used in the preferential oxidation of CO (CO-PROX) in excess of hydrogen at room temperature and atmospheric pressure both in the dark and under simulated solar light irradiation. To study their textural, structural, chemical and optical properties, the samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), adsorption-desorption of N₂ at -196 °C, C and Si solid state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance ultraviolet-visible (DRUV-vis) spectroscopy. Titanium was present mainly in the form of titania aggregates, but also as small particles interacting with the SBA support.

View Article and Find Full Text PDF

The photocatalytic degradation of methylene blue (MB) dye has been performed under UV irradiation in aqueous suspension, employing photocatalysts based on Au (1.5 wt %) and AuCu (Au/Cu = 1, 2.0 wt %), and supported on SBA-15-ordered mesoporous silica, with and without titania (Si/Ti = 3), in order to evaluate the versatility of this mesoporous support in this type of reaction of great impact from the environmental point of view.

View Article and Find Full Text PDF