Publications by authors named "Isabel Barao"

Bystander activation of memory T cells occurs via cytokine signaling alone in the absence of T cell receptor (TCR) signaling and provides a means of amplifying T cell effector responses in an antigen-nonspecific manner. While the role of Programmed Cell Death Protein 1 (PD-1) on antigen-specific T cell responses is extensively characterized, its role in bystander T cell responses is less clear. We examined the role of the PD-1 pathway during human and mouse non-antigen-specific memory T cell bystander activation and observed that PD-1+ T cells demonstrated less activation and proliferation than activated PD-1- populations in vitro.

View Article and Find Full Text PDF

Natural killer (NK) cells are involved in innate defense against viral infection and cancer. NK cells can be divided into subsets based on the ability of different receptors to bind to major histocompatibility (MHC) class 1 molecules, resulting in differential responses upon activation in a process called "licensing" or "arming." NK cells expressing receptors that bind self-MHC are considered licensed due to an augmented effector lytic function capability compared with unlicensed subsets.

View Article and Find Full Text PDF

The failure of autologous hematopoietic stem cell transplantation (HSCT) has been associated with a profound immunodeficiency that follows shortly after treatment, which renders patients susceptible to opportunistic infections and/or cancer relapse. Thus, given the additional immunosuppressive pathways involved in immune evasion in cancer, strategies that induce a faster reconstitution of key immune effector cells are needed. Natural killer (NK) cells mediate potent anti-tumor effector functions and are the first immune cells to repopulate after HSCT.

View Article and Find Full Text PDF

Objectives: The host DNA sensor proteins TLR9, STING, IFI16 are central signaling molecules that control the innate immune response to cytosolic nucleic acids. Here we propose to investigate how Natural killer (NK) cell infection by human herpesvirus (HHV)-6A, HHV-6B or HHV-7 is able to modify DNA sensor signaling in NK cells.

Methods: We infected the NK92 cell line and primary NK cells with cell-free inocula of HHV-6A, HHV-6B or HHV-7 and evaluated TLR9, STING, and IFI16 pathway expression by Real-Time PCR, Western Blot, immunofluorescence and flow cytometry for 1, 2, 3, and 6 days post-infection.

View Article and Find Full Text PDF

We have recently reported the presence of Human herpesvirus-6A (HHV-6A) DNA in the 43% of endometrial epithelial cells from primary idiopathic infertile women, with no positivity in fertile women. To investigate the possible effect of HHV-6A infection in endometrial (e)NK cells functions, we examined activating/inhibitory receptors expressed by eNK cells and the corresponding ligands on endometrial cells during HHV-6A infection. Endometrial biopsies and uterine flushing samples during the secretory phase were obtained from 20 idiopathic infertile women and twenty fertile women.

View Article and Find Full Text PDF

Human Herpesvirus 6 (HHV-6) is a set of two closely related herpes viruses known as HHV-6A and HHV-6B. Both are lymphotropic viruses that establish latency in the host. The ability to evade the immune responses of effector cells is likely a major factor contributing to the development of a persistent HHV-6A/B (collectively termed HHV-6) infection.

View Article and Find Full Text PDF

Inhibitory natural killer (NK) cell receptors specific for major histocompatibility complex class I (MHC-I) molecules include Ly49 receptors in mice and killer immunoglobulin-like receptors (KIR) in humans. The "licensing" or "arming" models imply that engagement of these receptors to self MHC-I molecules during NK cell development educates NK cells to be more responsive to cancer and viral infection. We recently reported that hematopoietic stem cell transplantation (HSCT) induced rapid and preferential expansion of functionally competent Ly49G(+), but not other Ly49 family, NK cells independent of NK cell licensing via Ly49-MHC-I interactions.

View Article and Find Full Text PDF

Interactions between several tumor necrosis factor (TNF)-TNF receptor (TNFR) superfamily members that are expressed by T cells and natural killer (NK) cells and various other cell types modulate immune responses. This review summarizes the current understanding of how the TNF ligand-TNFR interactions 4-1BBL with 4-1BB, and GITRL with glucocorticoid-induced TNFR-related (GITR) regulate NK cell mediated antitumor responses and discuss its therapeutic implications.

View Article and Find Full Text PDF

Natural killer (NK) cells can mediate the rejection of bone marrow allografts and exist as subsets based on expression of inhibitory/activating receptors that can bind MHC. In vitro data have shown that NK subsets bearing Ly49 receptors for self-MHC class I have intrinsically higher effector function, supporting the hypothesis that NK cells undergo a host MHC-dependent functional education. These subsets also play a role in bone marrow cell (BMC) allograft rejection.

View Article and Find Full Text PDF

Immune deficiency immediately following bone marrow transplantation (BMT) increases susceptibility to opportunistic infections as well as tumor relapse. Natural Killer (NK) cells play important roles in the resistance to virally infected and transformed cells. Interleukin (IL)-15 has been shown to be essential for NK cell development and survival.

View Article and Find Full Text PDF

Natural killer (NK) cell subsets can be defined by the differential expression of inhibitory receptors for MHC class I molecules. Early after congenic HSCT, we found that Ly49G2(high) single-positive NK cells repopulated, displayed an activated phenotype, and were highly cytolytic. Over time, this subset was replaced with NK cells with a normal pattern of Ly49 expression.

View Article and Find Full Text PDF

CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) possess the capacity to modulate both adaptive and innate immune responses. We hypothesized that Tregs could regulate hematopoiesis based on cytokine effector molecules they can produce. The studies here demonstrate that Tregs can affect the differentiation of myeloid progenitor cells.

View Article and Find Full Text PDF

Interleukin (IL)-2 has been extensively examined to promote clinical T and natural killer (NK) cell responses. Regulatory T cells (Tregs) have been shown to regulate many aspects of the immune system, including NK cell-mediated responses. We have demonstrated that in vivo administration of IL-2 led to activation and expansion of both NK cells and immunosuppressive Tregs.

View Article and Find Full Text PDF

Bortezomib is a proteasome inhibitor that has direct antitumor effects. We and others have previously demonstrated that bortezomib could also sensitize tumor cells to killing via the death ligand, TRAIL. NK cells represent a potent antitumor effector cell.

View Article and Find Full Text PDF

Naturally occurring CD4(+)CD25(+) T regulatory (Treg) cells have been shown to inhibit adaptive responses by T cells. Natural killer (NK) cells represent an important component of innate immunity in both cancer and infectious disease states. We investigated whether CD4(+)CD25(+) Treg cells could affect NK cell function in vivo by using allogeneic (full H2-disparate) bone marrow (BM) transplantation and the model of hybrid resistance, in which parental marrow grafts are rejected solely by the NK cells of irradiated (BALB/c x C57BL/6) F(1) recipients.

View Article and Find Full Text PDF

Graft-versus-host disease (GVHD) represents a major hurdle impeding the efficacy of allogeneic bone marrow transplantation (BMT). Bortezomib is a proteasome inhibitor that was recently approved for treatment of myeloma. We found that bortezomib potently inhibited in vitro mixed lymphocyte responses and promoted the apoptosis of alloreactive T cells.

View Article and Find Full Text PDF

Natural killer (NK) cells mediate the acute rejection of bone marrow cell (BMC) allografts, but not solid tissue grafts, in lethally irradiated mice. However, the mechanisms underlying this capability for rejecting BMC remain unclear. NK cells express (1) inhibitory receptors specific for major histocompatibility complex (MHC) class I molecules and (2) activating receptors with diverse specificities.

View Article and Find Full Text PDF

Optimal differentiation of cytotoxic NK cells is important to provide protective innate immunity to patients after bone marrow transplantation. In vitro differentiation of CD56(+)CD3(-) NK cells takes weeks and is supported by several cytokines, including IL-2, IL-7, and IL-15, and thus can be useful for immunotherapy. However, IL-2 therapy is problematic in vivo, and NK cells differentiated in vitro with only IL-7 lack cytotoxicity.

View Article and Find Full Text PDF

In vivo and in vitro xenogeneic models have shown the ability of a non-human environment in supporting human haemopoiesis. In the present study, we evaluated the effect of fetal sheep thymic stroma in the in vitro development of natural killer (NK) cells from human haemopoietic progenitors. CD34+HLA-DR+ (CD34+ DR+)Lin- and CD34+DR-Lin- bone marrow (BM) progenitors were cultured for 3 weeks with or without interleukin 2 (IL-2), in fetal sheep thymic stroma contact and transwell cultures.

View Article and Find Full Text PDF