Publications by authors named "Isaacman-VanWertz G"

Article Synopsis
  • Traditional methods for measuring the chemical composition of particulate matter are expensive and complex, mostly using research-grade instruments that aren't suitable for routine monitoring.
  • A new online instrument called "ChemSpot" has been developed to autonomously measure key characteristics like organic aerosol mass loading and sulfur content, offering a cost-effective alternative.
  • The ChemSpot has shown high particle collection efficiency and quick heating capabilities, with its results closely correlating to those from more traditional methods, indicating it can operate reliably over long periods.
View Article and Find Full Text PDF

Emissions of biogenic reactive carbon significantly influence atmospheric chemistry, contributing to the formation and destruction of secondary pollutants, such as secondary organic aerosol and ozone. While isoprene and monoterpenes are a major fraction of emissions and have been extensively studied, substantially less is known about the atmospheric impacts of higher-molecular-weight terpenes such as sesquiterpenes. In particular, sesquiterpenes have been proposed to play a significant role in ozone chemical loss due to the very high ozone reaction rates of certain isomers.

View Article and Find Full Text PDF

This study introduces a novel surface-enhanced Raman spectroscopy (SERS)-based lateral flow test (LFT) dipstick that integrates digital analysis for highly sensitive and rapid viral quantification. The SERS-LFT dipsticks, incorporating gold-silver core-shell nanoparticle probes, enable pixel-based digital analysis of large-area SERS scans. Such an approach enables ultralow-level detection of viruses that readily distinguishes positive signals from background noise at the pixel level.

View Article and Find Full Text PDF

Urbanization and fires perturb the quantities and composition of fine organic aerosol in the central Amazon, with ramifications for radiative forcing and public health. These disturbances include not only direct emissions of particulates and secondary organic aerosol (SOA) precursors but also changes in the pathways through which biogenic precursors form SOA. The composition of ambient organic aerosol is complex and incompletely characterized, encompassing millions of potential structures relatively few of which have been synthesized and characterized.

View Article and Find Full Text PDF

Volatile chemical products (VCPs) account for increasing fractions of organic carbon emitted to the atmosphere, particularly in urban areas. Fragrances are potentially reactive components that are added to many VCPs. To better constrain these emissions, 11 commercially available liquid fragrance mixtures were characterized for their composition and their evaporation modeled.

View Article and Find Full Text PDF

Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density.

View Article and Find Full Text PDF

Underground storage tanks containing petroleum or other hazardous substances are used widely for residential storage of home heating oil. Spills and leaks of fuel from these tanks are common, and resulting subsurface petroleum vapors may pose health risks. However, understanding of this risk is limited by a lack of observational data on the chemical composition of vapors from discharged fuel.

View Article and Find Full Text PDF

Despite the central role of reactive organic carbon (ROC) in the formation of secondary species that impact global air quality and climate, our assessment of ROC abundance and impacts is challenged by the diversity of species that contribute to it. We revisit measurements of ROC species made during two field campaigns in the United States: the 2013 SOAS campaign in forested Centreville, AL, and the 2010 CalNex campaign in urban Pasadena, CA. We find that average measured ROC concentrations are about twice as high in Pasadena (73.

View Article and Find Full Text PDF
Article Synopsis
  • Complex mixtures of hydrocarbons, commonly found in petroleum fuels and as environmental contaminants, pose challenges for detailed chemical analysis due to their intricate nature.
  • A new analytical method was developed using gas chromatography and mass spectrometry to categorize hydrocarbons by their structural groups, allowing for effective characterization of these mixtures without the need for advanced equipment.
  • This method was validated against high-resolution techniques, showing strong agreement, and highlighted significant variations in hydrocarbon compositions in contaminated soil gas samples, indicating the presence of various oxygenated components.
View Article and Find Full Text PDF
Article Synopsis
  • Anthropogenic emissions significantly impact the chemistry of secondary organic aerosol (SOA) formation from isoprene in forested environments.
  • Research conducted in the Amazon and Southeastern U.S. shows that tracer concentrations for isoprene-derived SOA correlate with particulate sulfate, indicating that a reduction in sulfate can lead to a reduction in SOA.
  • The study highlights the dominance of organosulfates in isoprene/NO pathway SOA and reveals the relationship between particle acidity and isoprene-derived compounds, challenging traditional views that associate these compounds primarily with human influence.
View Article and Find Full Text PDF

One of the least understood aspects in atmospheric chemistry is how urban emissions influence the formation of natural organic aerosols, which affect Earth's energy budget. The Amazon rainforest, during its wet season, is one of the few remaining places on Earth where atmospheric chemistry transitions between preindustrial and urban-influenced conditions. Here, we integrate insights from several laboratory measurements and simulate the formation of secondary organic aerosols (SOA) in the Amazon using a high-resolution chemical transport model.

View Article and Find Full Text PDF

Emission, transport, and fate of semi-volatile organic compounds (SVOCs), which include plasticizers, flame retardants, pesticides, biocides, and oxidation products of volatile organic compounds, are influenced in part by their tendency to sorb to indoor surfaces. A thin organic film enhances this effect, because it acts as both an SVOC sink and a source, thus potentially prolonging human exposure. Unfortunately, our ability to describe the initial formation and subsequent growth of organic films on indoor surfaces is limited.

View Article and Find Full Text PDF

Organosulfates are formed in the atmosphere from reactions between reactive organic compounds (such as oxidation products of isoprene) and acidic sulfate aerosol. Here we investigated speciated organosulfates in an area typically downwind of the city of Manaus situated in the Amazon forest in Brazil during "GoAmazon2014/5" in both the wet season (February-March) and dry season (August-October). We observe products consistent with the reaction of isoprene photooxidation products and sulfate aerosols, leading to formation of several types of isoprene-derived organosulfates, which contribute 3% up to 42% of total sulfate aerosol measured by aerosol mass spectrometry.

View Article and Find Full Text PDF
Article Synopsis
  • BVOCs from the Amazon are the largest global source of organic carbon emissions, primarily consisting of terpenoid compounds that transform in the atmosphere into oxygenated gases and secondary organic aerosol (SOA).
  • Researchers collected samples and conducted hourly measurements at a rural site near Manaus to study the emissions of these compounds during different seasons.
  • Findings indicated that sesquiterpenes significantly contribute to reactive ozone loss, with a rough estimate suggesting that their oxidation contributes around 1% to submicron organic aerosol mass, likely underestimating their total impact.
View Article and Find Full Text PDF

Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.

View Article and Find Full Text PDF

The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques.

View Article and Find Full Text PDF

A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)-including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products-now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the complex nature of atmospheric organic aerosol (OA) and identifies sources of uncertainty regarding its origins and environmental effects.* -
  • Approximately 50% of summer fine OA in Centreville, AL, a forested area influenced by pollution, comes from secondary organic aerosol (SOA) created by the oxidation of monoterpenes.* -
  • Findings highlight the significant impact of nitrogen oxides on monoterpene SOA production and emphasize the need to lower anthropogenic emissions, especially as biogenic emissions are expected to rise with climate change.*
View Article and Find Full Text PDF

Chromatography provides important detail on the composition of environmental samples and their chemical processing. However, the complexity of these samples and their tendency to contain many structurally and chemically similar compounds frequently results in convoluted or poorly resolved data. Data reduction from raw chromatograms of complex environmental data into integrated peak areas consequently often requires substantial operator interaction.

View Article and Find Full Text PDF

Organic compounds in the atmosphere vary widely in their molecular composition and chemical properties, so no single instrument can reasonably measure the entire range of ambient compounds. Over the past decade, a new generation of in situ, field-deployable mass spectrometers has dramatically improved our ability to detect, identify, and quantify these organic compounds, but no systematic approach has been developed to assess the extent to which currently available tools capture the entire space of chemical identity and properties that is expected in the atmosphere. Reduced-parameter frameworks that have been developed to describe atmospheric mixtures are exploited here to characterize the range of chemical properties accessed by a suite of instruments.

View Article and Find Full Text PDF

A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.

View Article and Find Full Text PDF

Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM/OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM/OC ratios in the SE US are often between 1.

View Article and Find Full Text PDF