Publications by authors named "Isaac Tangen"

The characterization of electrical double layers is important since the interfacial electric field and electrolyte environment directly affect the reaction mechanisms and catalytic rates of electrochemical processes. In this work, we introduce a spectroscopic method based on a Stark shift ruler that enables mapping the electric field strength across the electric double layer of electrode/electrolyte interfaces. We use the tungsten-pentacarbonyl(1,4-phenelenediisocyanide) complex attached to the gold surface as a molecular ruler.

View Article and Find Full Text PDF

The organic terahertz (THz) generation crystal BNA has recently gained traction as a source for producing broadband THz pulses. When pumped with 100 fs pulses, the thin BNA crystals can produce relatively high electric fields with frequency components out to 5 THz. However, the THz output with 800-nm pump wavelength is limited by the damage threshold of the material, particularly when using a 1 kHz or higher repetition rate laser.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have found a cool way to make terahertz (THz) radiation using special crystals that change laser light into THz pulses.
  • They created a new layered structure of materials to help reduce the loss of light that gets reflected away, which helps make more THz radiation.
  • Their research shows that this new structure can boost the amount of THz radiation produced by nearly 50%!
View Article and Find Full Text PDF

We present the structural and THz generation characteristics of the molecular salt crystal (E)-2-(4-(dimethylamino)styryl)-1,1,3-trimethyl-1H-benzo[e]indol-3-ium iodide (P-BI) using optical rectification with IR pump wavelengths. P-BI shows a peak-to-peak field ∼6 times greater than inorganic crystal GaP, and a broader THz spectrum. Data were obtained from 0-6 THz showing a significant dip in generation at 1.

View Article and Find Full Text PDF