Publications by authors named "Isaac Soltero"

Semiconducting transition metal dichalcogenides (MX) occur in 2H and rhombohedral (3R) polytypes, respectively distinguished by anti-parallel and parallel orientation of consecutive monolayer lattices. In its bulk form, 3R-MX is ferroelectric, hosting an out-of-plane electric polarisation, the direction of which is dictated by stacking. Here, we predict that twin boundaries, separating adjacent polarisation domains with reversed built-in electric fields, are able to host two-dimensional electrons and holes with an areal density reaching  ~ 10cm.

View Article and Find Full Text PDF

Van der Waals heterostructures have opened new opportunities to develop atomically thin (opto)electronic devices with a wide range of functionalities. The recent focus on manipulating the interlayer twist angle has led to the observation of out-of-plane room temperature ferroelectricity in twisted rhombohedral bilayers of transition metal dichalcogenides. Here we explore the switching behaviour of sliding ferroelectricity using scanning probe microscopy domain mapping and tunnelling transport measurements.

View Article and Find Full Text PDF

Twisted bilayers of two-dimensional semiconductors offer a versatile platform for engineering quantum states for charge carriers using moiré superlattice effects. Among the systems of recent interest are twistronic MoX/WX heterostructures (X = Se or S), which undergo reconstruction into preferential stacking domains and highly strained domain wall networks, determining the electron/hole localization across moiré superlattices. Here, we present a catalogue of options for the formation of self-organized quantum dots and wires in lattice-reconstructed marginally twisted MoX/WX bilayers with a relative lattice mismatch δ ≪ 1 for twist angles ranging from perfect alignment to θ ∼ 1°.

View Article and Find Full Text PDF