Breast cancer metastases exhibit many different genetic alterations, including copy number amplifications (CNA). CNA are genetic alterations that are increasingly becoming relevant to breast oncology clinical practice. Here we identify CNA in metastatic breast tumor samples using publicly available datasets and characterize their expression and function using a metastatic mouse model of breast cancer.
View Article and Find Full Text PDFWe present an integrated single-cell RNA sequencing atlas of the primary breast tumor microenvironment (TME) containing 236,363 cells from 119 biopsy samples across eight datasets. In this study, we leverage this resource for multiple analyses of immune and cancer epithelial cell heterogeneity. We define natural killer (NK) cell heterogeneity through six subsets in the breast TME.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) have emerged as a revolutionary therapeutic class, combining the precise targeting ability of monoclonal antibodies with the potent cytotoxic effects of chemotherapeutics. Notably, ADCs have rapidly advanced in the field of breast cancer treatment. This innovative approach holds promise for strengthening the immune system through antibody-mediated cellular toxicity, tumor-specific immunity, and adaptive immune responses.
View Article and Find Full Text PDFBreast cancer metastases exhibit many different genetic alterations, including copy number amplifications. Using publicly available datasets, we identify copy number amplifications in metastatic breast tumor samples and using our organoid-based metastasis assays, and we validate FGFR1 is amplified in collectively migrating organoids. Because the heterogeneity of breast tumors is increasingly becoming relevant to clinical practice, we demonstrate our organoid method captures genetic heterogeneity of individual tumors.
View Article and Find Full Text PDFFast volumetric imaging of large fluorescent samples with high-resolution is required for many biological applications. Oblique plane microscopy (OPM) provides high spatiotemporal resolution, but the field of view is typically limited by its optical train and the pixel number of the camera. Mechanically scanning the sample or decreasing the overall magnification of the imaging system can partially address this challenge, albeit by reducing the volumetric imaging speed or spatial resolution, respectively.
View Article and Find Full Text PDFOrganoids are a reliable method for modeling organ tissue due to their self-organizing properties and retention of function and architecture after propagation from primary tissue or stem cells. This method of organoid generation forgoes single-cell differentiation through multiple passages and instead uses differential centrifugation to isolate mammary epithelial organoids from mechanically and enzymatically dissociated tissues. This protocol provides a streamlined technique for rapidly producing small and large epithelial organoids from both mouse and human mammary tissue in addition to techniques for organoid embedding in collagen and basement extracellular matrix.
View Article and Find Full Text PDFIncluding patient advocates in basic cancer research ensures that breast cancer research is intentional, supports effective communication with broader audiences, and directly connects researchers with those who they are striving to help. Despite this utility, many cancer research scientists do not work with patient advocates. To understand barriers to engagement and build a framework for enhanced interactions in the future, we hosted a workshop with patient advocates and researchers who do engage, then discussed findings at an international metastatic breast cancer conference to solicit additional feedback and suggestions.
View Article and Find Full Text PDFMethods Mol Biol
April 2022
Metastasis is a complex process that has been historically difficult to model in culture. Host immune responses play critical roles in restraining and promoting metastatic tumor cells. Here we describe a method of 3D organotypic co-culture of natural killer cells and tumor organoids to capture interactions between the two cellular populations.
View Article and Find Full Text PDFBackground: Poly-ADP ribose polymerase (PARP) inhibitors (PARPi) are active in patients with germline BRCA1/2 (gBRCA1/2)-mutated breast cancer, accounting for 5% to 10% of all breast cancers. Another 5% to 10% harbor somatic BRCA1/2 (sBRCA1/2) mutations or mutations in non-BRCA1/2, homologous recombination repair (HRR) genes but until recently, there were no data for the use of PARPi in these patients. This study examines the use of olaparib in patients with metastatic breast cancer harboring sBRCA1/2 or germline or somatic non-BRCA1/2, HRR mutations and demonstrates potential activity of PARPi in this setting.
View Article and Find Full Text PDFTo prevent damage to the host or its commensal microbiota, epithelial tissues must match the intensity of the immune response to the severity of a biological threat. Toll-like receptors allow epithelial cells to identify microbe associated molecular patterns. However, the mechanisms that mitigate biological noise in single cells to ensure quantitatively appropriate responses remain unclear.
View Article and Find Full Text PDFNatural killer (NK) cells have potent antitumor and antimetastatic activity. It is incompletely understood how cancer cells escape NK cell surveillance. Using ex vivo and in vivo models of metastasis, we establish that keratin-14+ breast cancer cells are vulnerable to NK cells.
View Article and Find Full Text PDFJ Immunother Cancer
March 2018
Merkel Cell carcinoma (MCC) is a rare but aggressive cancer, with an estimated disease-associated mortality as high as 46%. MCC has proven to be an immunologically responsive disease and the advent of immune checkpoint inhibitors has changed the treatment landscape for patients with advanced MCC. In this review, we discuss the rationale for the use of immune checkpoint inhibition, review current single agent therapies tested in and approved for MCC, and discuss emerging immunotherapeutic options for these patients.
View Article and Find Full Text PDFBackground: Schistosomiasis mansoni is a major cause of portal fibrosis and portal hypertension. The Hedgehog pathway regulates fibrogenic repair in some types of liver injury.
Aims: Determine if Hedgehog pathway activation occurs during fibrosis progression in schistosomiasis and to determine if macrophage-related mechanisms are involved.
Hepatocellular carcinoma (HCC) typically develops in cirrhosis, a condition characterized by Hedgehog (Hh) pathway activation and accumulation of Hh-responsive myofibroblasts. Although Hh signaling generally regulates stromal-epithelial interactions that support epithelial viability, the role of Hh-dependent myofibroblasts in hepatocarcinogenesis is unknown. Here, we used human HCC samples, a mouse HCC model, and hepatoma cell/myofibroblast cocultures to examine the hypothesis that Hh signaling modulates myofibroblasts' metabolism to generate fuels for neighboring malignant hepatocytes.
View Article and Find Full Text PDFBackground & Aims: The pathogenesis of cirrhosis, a disabling outcome of defective liver repair, involves deregulated accumulation of myofibroblasts derived from quiescent hepatic stellate cells (HSCs), but the mechanisms that control transdifferentiation of HSCs are poorly understood. We investigated whether the Hedgehog (Hh) pathway controls the fate of HSCs by regulating metabolism.
Methods: Microarray, quantitative polymerase chain reaction, and immunoblot analyses were used to identify metabolic genes that were differentially expressed in quiescent vs myofibroblast HSCs.
Objective: Immune responses are important in dictating non-alcoholic steatohepatitis (NASH) outcome. We previously reported that upregulation of hedgehog (Hh) and osteopontin (OPN) occurs in NASH, that Hh-regulated accumulation of natural killer T (NKT) cells promotes hepatic stellate cell (HSC) activation, and that cirrhotic livers harbour large numbers of NKT cells.
Design: The hypothesis that activated NKT cells drive fibrogenesis during NASH was evaluated by assessing if NKT depletion protects against NASH fibrosis; identifying the NKT-associated fibrogenic factors; and correlating plasma levels of the NKT cell-associated factor OPN with fibrosis severity in mice and humans.
Objective: Vascular remodelling during liver damage involves loss of healthy liver sinusoidal endothelial cell (LSEC) phenotype via capillarisation. Hedgehog (Hh) signalling regulates vascular development and increases during liver injury. This study therefore examined its role in capillarisation.
View Article and Find Full Text PDFObjective: Chronic fibrosing liver injury is a major risk factor for hepatocarcinogenesis in humans. Mice with targeted deletion of Mdr2 (the murine ortholog of MDR3) develop chronic fibrosing liver injury. Hepatocellular carcinoma (HCC) emerges spontaneously in such mice by 50-60 weeks of age, providing a model of fibrosis-associated hepatocarcinogenesis.
View Article and Find Full Text PDFPersonalized medicine is a broad and rapidly advancing field of health care that is informed by each person's unique clinical, genetic, genomic, and environmental information. Personalized medicine depends on multidisciplinary health care teams and integrated technologies (e.g.
View Article and Find Full Text PDF