Publications by authors named "Isaac M Kim"

Selective autolysosomal degradation of damaged mitochondria, also called mitophagy, is an indispensable process for maintaining integrity and homeostasis of mitochondria. One well-established mechanism mediating selective removal of mitochondria under relatively mild mitochondria-depolarizing stress is PINK1-Parkin-mediated or ubiquitin-dependent mitophagy. However, additional mechanisms such as LC3-mediated or ubiquitin-independent mitophagy induction by heavy environmental stress exist and remain poorly understood.

View Article and Find Full Text PDF

Arsenite, a trivalent form of arsenic, is an element that occurs naturally in the environment. Humans are exposed to high dose of arsenite through consuming arsenite-contaminated drinking water and food, and the arsenite can accumulate in the human tissues. Arsenite induces oxidative stress, which is linked to metabolic disorders such as obesity and diabetes.

View Article and Find Full Text PDF

Autophagy, lipophagy, and mitophagy are considered to be the major recycling processes for protein aggregates, excess fat, and damaged mitochondria in adipose tissues in response to nutrient status-associated stress, oxidative stress, and genotoxic stress in the human body. Obesity with increased body weight is often associated with white adipose tissue (WAT) hypertrophy and hyperplasia and/or beige/brown adipose tissue atrophy and aplasia, which significantly contribute to the imbalance in lipid metabolism, adipocytokine secretion, free fatty acid release, and mitochondria function. In recent studies, hyperactive autophagy in WAT was observed in obese and diabetic patients, and inhibition of adipose autophagy through targeted deletion of autophagy genes in mice improved anti-obesity phenotypes.

View Article and Find Full Text PDF