Reaching movements can be redirected during their progress to handle unexpected visual changes, such as a change in target location. It is important to know when these redirections start, i.e.
View Article and Find Full Text PDFPostural stabilization is essential to effectively interact with our environment. Humans preemptively adjust their posture to counteract impending disturbances, such as those encountered during interactions with moving objects, a phenomenon known as anticipatory postural adjustments (APAs). APAs are thought to be influenced by predictive models that incorporate object motion via retinal motion and extraretinal signals.
View Article and Find Full Text PDFWhen stopping a closing door or catching an object, humans process the motion of inertial objects and apply reactive limb force over short period to interact with them. One way in which the visual system processes motion is through extraretinal signals associated with smooth pursuit eye movements (SPEMs). We conducted three experiments to investigate how SPEMs contribute to anticipatory and reactive hand force modulation when interacting with a virtual object moving in the horizontal plane.
View Article and Find Full Text PDFAn important window into sensorimotor function is how humans interact and stop moving projectiles, such as stopping a door from closing shut or catching a ball. Previous studies have suggested that humans time the initiation and modulate the amplitude of their muscle activity based on the momentum of the approaching object. However, real-world experiments are constrained by laws of mechanics, which cannot be manipulated experimentally to probe the mechanisms of sensorimotor control and learning.
View Article and Find Full Text PDFThe timing of motor commands is critical for task performance. A well-known example is rapidly raising the arm while standing upright. Here, reaction forces from the arm movement to the body are countered by leg and trunk muscle activity starting before any sensory feedback from the perturbation and often before the onset of arm muscle activity.
View Article and Find Full Text PDFMany goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults, causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual identification are mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory processing in these streams contribute to declines in visuomotor decision-making performance. Previously, we showed that in young adults, task demands influenced movement strategies during visuomotor decision-making, reflecting differential integration of sensory information between the two streams.
View Article and Find Full Text PDFReaching movements performed from a crouched body posture require a shift of body weight from both arms to one arm. This situation has remained unexamined despite the analogous load requirements during step initiation and the many studies of reaching from a seated or standing posture. To determine whether the body weight shift involves anticipatory or exclusively reactive control, we obtained force plate records, hand kinematics, and arm muscle activity from 11 healthy right-handed participants.
View Article and Find Full Text PDFLimb dominance is evident in many daily activities, leading to the prominent idea that each hemisphere of the brain specializes in controlling different aspects of movement. Past studies suggest that the dominant arm is primarily controlled via an internal model of limb dynamics that enables the nervous system to produce efficient movements. In contrast, the nondominant arm may be primarily controlled via impedance mechanisms that rely on the strong modulation of sensory feedback from individual joints to control limb posture.
View Article and Find Full Text PDFPerception of limb position and motion combines sensory information from spindles in muscles that span one joint (monoarticulars) and two joints (biarticulars). This anatomical organization should create interactions in estimating limb position. We developed two models, one with only monoarticulars and one with both monoarticulars and biarticulars, to explore how biarticulars influence estimates of arm position in hand (, ) and joint () coordinates.
View Article and Find Full Text PDFMotor behavior often occurs in environments with multiple goal options that can vary during the ongoing action. We explored this situation by requiring subjects to select between different target options during an ongoing reach. During split trials the original target was replaced with a left and a right flanking target, and participants had to select between them.
View Article and Find Full Text PDFInter-limb reflexes play an important role in coordinating behaviors involving different limbs. Previous studies have demonstrated that human elbow muscles express an inter-limb stretch reflex at long-latency (50-100 ms), a timing consistent with a trans-cortical linkage. Here we probe for inter-limb stretch reflexes in the shoulder muscles of human participants.
View Article and Find Full Text PDFJ Undergrad Neurosci Educ
December 2019
There is both anecdotal and quantitative evidence that undergraduate neuroscience education has grown substantially in the US. Therefore, efforts to continue to track changes in undergraduate neuroscience education are important. Here we provide quantitative data that both public and private institutions are creating new undergraduate neuroscience programs.
View Article and Find Full Text PDFJ Neurophysiol
February 2019
Previous studies have demonstrated a progression of function when healthy subjects counter a sudden mechanical load. Short-latency reflexes are linked to local stretch of the particular muscle and its antagonist. Long-latency reflexes integrate stretch information from both local sources and muscles crossing remote joints appropriate for a limb's mechanical interactions.
View Article and Find Full Text PDFSuccessful performance in many everyday tasks requires compensating unexpected mechanical disturbance to our limbs and body. The long-latency reflex plays an important role in this process because it is the fastest response to integrate sensory information across several effectors, like when linking the elbow and shoulder or the arm and body. Despite the dozens of studies on inter-effector long-latency reflexes, there has not been a comprehensive treatment of how these reveal the basic control organization that sets constraints on any candidate model of neural feedback control such as optimal feedback control.
View Article and Find Full Text PDFSudden limb displacement evokes a complex sequence of compensatory muscle activity. Following the short-latency reflex and preceding voluntary reactions is an epoch termed the medium-latency reflex (MLR) that could reflect spinal processing of group II muscle afferents. One way to test this possibility is oral ingestion of tizanidine, an alpha-2 adrenergic agonist that inhibits the interneurons transmitting group II signals onto spinal motor neurons.
View Article and Find Full Text PDFPostural corrections of the upper limb are required in tasks ranging from handling an umbrella in the changing wind to securing a wriggling baby. One complication in this process is the mechanical interaction between the different segments of the arm where torque applied at one joint induces motion at multiple joints. Previous studies have shown the long-latency reflexes of shoulder muscles (50-100 ms after a limb perturbation) account for these mechanical interactions by integrating information about motion of both the shoulder and elbow.
View Article and Find Full Text PDFFront Integr Neurosci
February 2015
Accurate control of body posture is enforced by a multitude of corrective actions operating over a range of time scales. The earliest correction is the short-latency reflex (SLR) which occurs between 20-45 ms following a sudden displacement of the limb and is generated entirely by spinal circuits. In contrast, voluntary reactions are generated by a highly distributed network but at a significantly longer delay after stimulus onset (greater than 100 ms).
View Article and Find Full Text PDFA number of studies have highlighted the sophistication of corrective responses in lengthened muscles during the long-latency epoch. However, in various contexts, unloading can occur, which requires corrective actions from a shortened muscle. Here, we investigate the sophistication of inhibitory responses in shortened muscles due to unloading.
View Article and Find Full Text PDFCorrective muscle responses occurring 50-100 ms after a mechanical perturbation are tailored to the mechanical features of the limb and its environment. For example, the evoked response by the shoulder's extensor muscle counters an imposed shoulder torque, rather than local shoulder motion, by integrating motion information from the shoulder and elbow appropriate for their dynamic interaction. Previous studies suggest that arm muscle activity within this epoch, alternately termed the R2/3 response, or long-latency reflex, reflects the summed result of two distinct components: an activity-dependent component which scales with the background muscle activity, and a task-dependent component which scales with the required vigor of the behavioral task.
View Article and Find Full Text PDFDamage to the cerebellum can cause significant problems in the coordination of voluntary arm movements. One prominent idea is that incoordination stems from an inability to predictively account for the complex mechanical interactions between the arm's several joints. Motivated by growing evidence that corrective feedback control shares important capabilities and neural substrates with feedforward control, we asked whether cerebellar damage impacts feedback stabilization of the multijoint arm appropriate for the arm's intersegmental dynamics.
View Article and Find Full Text PDFWhereas muscle spindles play a prominent role in current theories of human motor control, Golgi tendon organs (GTO) and their associated tendons are often neglected. This is surprising since there is ample evidence that both tendons and GTOs contribute importantly to neuromusculoskeletal dynamics. Using detailed musculoskeletal models, we provide evidence that simple feedback using muscle spindles alone results in very poor control of joint position and movement since muscle spindles cannot sense changes in tendon length that occur with changes in muscle force.
View Article and Find Full Text PDFA basic difficulty for the nervous system is integrating locally ambiguous sensory information to form accurate perceptions about the outside world. This local-to-global problem is also fundamental to motor control of the arm, because complex mechanical interactions between shoulder and elbow allow a particular amount of motion at one joint to arise from an infinite combination of shoulder and elbow torques. Here we show, in humans and rhesus monkeys, that a transcortical pathway through primary motor cortex (M1) resolves this ambiguity during fast feedback control.
View Article and Find Full Text PDFThe nervous system counters mechanical perturbations applied to the arm with a stereotypical sequence of muscle activity, starting with the short-latency stretch reflex and ending with a voluntary response. Occurring between these two events is the enigmatic long-latency reflex. Although researchers have been fascinated by the long-latency reflex for over 60 years, some of the most basic questions about this response remain unresolved and often debated.
View Article and Find Full Text PDFFeedback control of our limbs must account for the unexpected offset of mechanical perturbations. Here we examine the evoked activity of elbow flexor and extensor muscles to torque pulses lasting 22-152 ms and how torque offset impacts activity in the long-latency (45-100 ms) and voluntary epochs (120-180 ms). For each pulse width, we found a significant attenuation of muscle activity approximately 30 ms after the offset of torque compared with when the torque was sustained.
View Article and Find Full Text PDFAlthough considerable research indicates that reaching movements rely on knowledge of the arm's mechanical properties and environment to anticipate and counter predictable loads, far less research has examined whether this degree of sophistication is present for on-line corrections during reaching. Here we examine the R2/3 response to mechanical perturbations (45-100 ms, also called the long-latency reflex), which is highly flexible and includes the fastest possible contribution from primary motor cortex, a key neural substrate for self-initiated action. Torque perturbations were occasionally and unexpectedly applied to the subject's shoulder and/or elbow in the course of performing reaching movements.
View Article and Find Full Text PDF