Publications by authors named "Isaac Hurtado-Guerrero"

Alcohol use disorder (AUD) is a major component in the etiology of cognitive decline and dementia. Underlying mechanisms by which long-term alcohol abuse causes cognitive dysfunction include excessive oxidative stress and inflammation in the brain, activated by increased reactive oxygen/nitrogen species (ROS/RNS), advanced glycation end-products (AGEs) and high-mobility group box 1 protein (HMGB1). In a pilot study, we examine the potential clinical value of circulating biomarkers of oxidative stress including ROS/RNS, HMGB1, the soluble receptor for AGE (sRAGE), the brain biomarker of aging apolipoprotein D (ApoD), and the antioxidant regulator nuclear factor erythroid 2-related factor 2 (NRF2) as predictive indices for cognitive impairment (CI) in abstinent patients with AUD ( = 25) compared to patients with established Alzheimer's disease (AD, = 26) and control subjects ( = 25).

View Article and Find Full Text PDF

Introduction: Natalizumab is a biologic drug for relapsing-remitting multiple sclerosis that may induce the generation of anti-drug antibodies in some patients. Anti-natalizumab antibodies (ANA) increase the risk of adverse events and reduce efficacy, being useful biomarkers for monitoring treatment response.

Methods: Retrospective observational study including MS patients treated with natalizumab that experienced infusion-related events (IRE) or disease exacerbations (DE).

View Article and Find Full Text PDF

Purpose: Interferon beta receptor 2 subunit (IFNAR2) can be produced as a transmembrane protein, but also as a soluble form (sIFNAR2) generated by alternative splicing or proteolytic cleavage, which has both agonist and antagonist activities for IFN-β. However, its role regarding the clinical response to IFN-β for relapsing-remitting multiple sclerosis (RRMS) is unknown. We aim to evaluate the short-term effects and after 6 and 12 months of IFN-β therapy on sIFNAR2 production and their association with the clinical response in MS patients.

View Article and Find Full Text PDF

Environmental and genetic factors are assumed to be necessary for the development of multiple sclerosis (MS), however its interactions are still unclear. For this reason here, we have not only analyzed the impact on increased risk of MS of the best known factors ( allele, sun exposure, vitamin D levels, smoking habit), but we have included another factor (skin phototype) that has not been analyzed in depth until now. This study included 149 MS patients and 147 controls.

View Article and Find Full Text PDF

Soluble receptors of cytokines are able to modify cytokine activities and therefore the immune system, and some have intrinsic biological activities without mediation from their cytokines. The soluble interferon beta (IFN-ß) receptor is generated through alternative splicing of IFNAR2 and has both agonist and antagonist properties for IFN-ß, but its role is unknown. We previously demonstrated that a recombinant human soluble IFN-ß receptor showed intrinsic therapeutic efficacy in a mouse model of multiple sclerosis.

View Article and Find Full Text PDF

Interferon beta (IFNβ) therapy has immunogenic properties and induces the development of neutralizing antibodies (NAbs). From the extensive literature focused in the development of NAbs in multiple sclerosis (MS) patients, their ability to cross-react has been deficiently evaluated, despite having important consequences in the clinical practice. Here, the relation between the cross-reactivity and the NAbs titers has been evaluated in MS patients, by inhibition of the antiviral activity of IFNβ by bioassay and through the interference with the activation of the IFNß pathway (JAK-STAT), by phosphoflow.

View Article and Find Full Text PDF

The alteration of DNA methylation patterns are a key component of disease onset and/or progression. Our objective was to evaluate the differences in Long Interspersed Nuclear Element-1 (LINE-1) methylation levels, as a surrogate marker of global DNA methylation, between multiple sclerosis (MS) patients and healthy controls. In addition, we assessed the association of LINE-1 methylation with clinical disease activity in patients treated with IFNbeta (IFNβ).

View Article and Find Full Text PDF

Interferon beta (IFNß) is a common treatment used for multiple sclerosis (MS) which acts through the activation of the JAK-STAT pathway. However, this therapy is not always effective and currently there are no reliable biomarkers to predict therapeutic response. We postulate that the heterogeneity in the response to IFNß therapy could be related to differential activation patterns of the JAK-STAT signaling pathway.

View Article and Find Full Text PDF

Background: The soluble isoform of the interferon-β (IFN-β) receptor (sIFNAR2) could modulate the activity of both endogenous and systemically administered IFN-β. Previously, we described lower serum sIFNAR2 levels in untreated multiple sclerosis (MS) than in healthy controls (HCs).

Objective: To assess sIFNAR2 levels in a new cohort of MS patients and HCs, as well as in patients with clinically isolated syndrome (CIS) and with other inflammatory neurological disorders (OIND) and to assess its ability as a diagnostic biomarker.

View Article and Find Full Text PDF

Aim: The soluble isoform of the IFN-β receptor (sIFNAR2) can bind IFN-β and modulate its activity, although its role in autoimmune diseases remains unknown.

Methods: A recombinant human sIFNAR2 protein was cloned, expressed and purified after which we developed and validated an ELISA for its quantification in human serum. Serum sIFNAR2 were assessed in multiple sclerosis (MS) patients and healthy controls.

View Article and Find Full Text PDF

The lysophosphatidic acid LPA₁ receptor has recently been involved in the adaptation of the hippocampus to chronic stress. The absence of LPA₁ receptor aggravates the chronic stress-induced impairment of both hippocampal neurogenesis and apoptosis that were accompanied with hippocampus-dependent memory deficits. Apoptotic death and neurogenesis in the hippocampus are regulated by oxidative stress.

View Article and Find Full Text PDF