Publications by authors named "Isaac Hubner"

It has long been known that a protein's amino acid sequence dictates its native structure. However, despite significant recent advances, an ensemble description of how a protein achieves its native conformation from random coil under physiologically relevant conditions remains incomplete. Here we present a detailed all-atom model with a transferable potential that is capable of ab initio folding of entire protein domains using only sequence information.

View Article and Find Full Text PDF

Through extensive experiment, simulation, and analysis of protein S6 (1RIS), we find that variations in nucleation and folding pathway between circular permutations are determined principally by the restraints of topology and specific nucleation, and affected by changes in chain entropy. Simulations also relate topological features to experimentally measured stabilities. Despite many sizable changes in phi values and the structure of the transition state ensemble that result from permutation, we observe a common theme: the critical nucleus in each of the mutants share a subset of residues that can be mapped to the critical nucleus residues of the wild-type.

View Article and Find Full Text PDF

To explore the plasticity and structural constraints of the protein-folding nucleus we have constructed through circular permutation four topological variants of the ribosomal protein S6. In effect, these topological variants represent entropy mutants with maintained spatial contacts. The proteins were characterized at two complementary levels of detail: by phi-value analysis estimating the extent of contact formation in the transition-state ensemble and by Hammond analysis measuring the site-specific growth of the folding nucleus.

View Article and Find Full Text PDF

The size and origin of the protein fold universe is of fundamental and practical importance. Analyzing randomly generated, compact sticky homopolypeptide conformations constructed in generic simplified and all-atom protein models, all have similar folds in the library of solved structures, the Protein Data Bank, and conversely, all compact, single-domain protein structures in the Protein Data Bank have structural analogues in the compact model set. Thus, both sets are highly likely complete, with the protein fold universe arising from compact conformations of hydrogen-bonded, secondary structures.

View Article and Find Full Text PDF

A generalized computational method for folding proteins with a fully transferable potential and geometrically realistic all-atom model is presented and tested on seven helix bundle proteins. The protocol, which includes graph-theoretical analysis of the ensemble of resulting folded conformations, was systematically applied and consistently produced structure predictions of approximately 3 A without any knowledge of the native state. To measure and understand the significance of the results, extensive control simulations were conducted.

View Article and Find Full Text PDF

Protein structure is generally conceptualized as the global arrangement or of smaller, local motifs of helices, sheets, and loops. These regular, recurring secondary structural elements have well understood and standardized definitions in terms of amino acid backbone geometry and the manner in which hydrogen bonding requirements are satisfied. Recently, "tube" models have been proposed to explain protein secondary structure in terms of the geometrically optimal packing of a featureless cylinder.

View Article and Find Full Text PDF

We present a verified computational model of the SH3 domain transition state (TS) ensemble. This model was built for three separate SH3 domains using experimental phi-values as structural constraints in all-atom protein folding simulations. While averaging over all conformations incorrectly considers non-TS conformations as transition states, quantifying structures as pre-TS, TS, and post-TS by measurement of their transmission coefficient ("probability to fold", or p(fold)) allows for rigorous conclusions regarding the structure of the folding nucleus and a full mechanistic analysis of the folding process.

View Article and Find Full Text PDF

The thyroid hormone receptors (TRs) are ligand-dependent transcription factors that control the expression of multiple genes involved in development and homeostasis in response to thyroid hormone (triiodothyronine, T3). Mutations to TRbeta that reduce or abolish ligand-dependent transactivation function are associated with resistance to thyroid hormone (RTH), an autosomal dominant human genetic disease. A series of neutral alcohol-based compounds, based on the halogen-free thyromimetic GC-1, have been designed, synthesized, and evaluated in cell-based assays for their ability to selectively rescue three of the most common RTH-associated mutations (i.

View Article and Find Full Text PDF

Unlabelled: The conservatism of conservatism (CoC) database presents statistically analyzed information about the conservation of residue positions in folds across protein families.

Availability: On the web at http://kulibin.mit.

View Article and Find Full Text PDF

In this study, we explore nucleation and the transition state ensemble of the ribosomal protein S6 using a Monte Carlo (MC) Go model in conjunction with restraints from experiment. The results are analyzed in the context of extensive experimental and evolutionary data. The roles of individual residues in the folding nucleus are identified, and the order of events in the S6 folding mechanism is explored in detail.

View Article and Find Full Text PDF

An accurate characterization of the transition state ensemble (TSE) is central to furthering our understanding of the protein folding reaction. We have extensively tested a recently reported method for studying a protein's TSE, utilizing phi-value data from protein engineering experiments and computational studies as restraints in all-atom Monte Carlo (MC) simulations. The validity of interpreting experimental phi-values as the fraction of native contacts made by a residue in the TSE was explored, revealing that this definition is unable to uniquely specify a TSE.

View Article and Find Full Text PDF