Publications by authors named "Isaac Forquer"

To determine the target of the recently identified lead compound NSC130362 that is responsible for its selective anti-cancer efficacy and safety in normal cells, structure-activity relationship (SAR) studies were conducted. First, NSC13062 was validated as a starting compound for the described SAR studies in a variety of cell-based viability assays. Then, a small library of 1,4-naphthoquinines (1,4-NQs) and quinoline-5,8-diones was tested in cell viability assays using pancreatic cancer MIA PaCa-2 cells and normal human hepatocytes.

View Article and Find Full Text PDF

ELQ-300 is a preclinical antimalarial drug candidate that is active against liver, blood, and transmission stages of Plasmodium falciparum. While ELQ-300 is highly effective when administered in a low multidose regimen, poor aqueous solubility and high crystallinity have hindered its clinical development. To overcome its challenging physiochemical properties, a number of bioreversible alkoxycarbonate ester prodrugs of ELQ-300 were synthesized.

View Article and Find Full Text PDF
Article Synopsis
  • * A significant number of genetic alterations in these SDH genes are classified as variants of unknown significance (VUS), which complicates risk assessment for patients.
  • * This study employs clinical data, a yeast model, and computational analysis to evaluate 22 VUS, concluding that 73% are pathogenic and affect SDH function, emphasizing the need for better assessments of these genetic variants.
View Article and Find Full Text PDF

Endochin-like quinolones (ELQs) are potent and specific inhibitors of cytochrome bc1 from Plasmodium falciparum and Toxoplasma gondii and show promise for novel antiparasitic drug development. To determine whether the mitochondrial electron transport chain of Leishmania parasites could be targeted similarly for drug development, we investigated the activity of 134 structurally diverse ELQs. A cohort of ELQs was selectively toxic to amastigotes of Leishmania mexicana and L.

View Article and Find Full Text PDF

Human babesiosis is a tick-borne multisystem disease caused by Babesia species of the apicomplexan phylum. Most clinical cases and fatalities of babesiosis are caused by Babesia microti Current treatment for human babesiosis consists of two drug combinations, atovaquone + azithromycin or quinine + clindamycin. These treatments are associated with adverse side effects and a significant rate of drug failure.

View Article and Find Full Text PDF

Antimalarial combination therapies play a crucial role in preventing the emergence of drug-resistant Plasmodium parasites. Although artemisinin-based combination therapies (ACTs) comprise the majority of these formulations, inhibitors of the mitochondrial cytochrome bc1 complex (cyt bc1) are among the few compounds that are effective for both acute antimalarial treatment and prophylaxis. There are two known sites for inhibition within cyt bc1: atovaquone (ATV) blocks the quinol oxidase (Qo) site of cyt bc1, while some members of the endochin-like quinolone (ELQ) family, including preclinical candidate ELQ-300, inhibit the quinone reductase (Qi) site and retain full potency against ATV-resistant Plasmodium falciparum strains with Qo site mutations.

View Article and Find Full Text PDF

ELQ-300 is a preclinical candidate that targets the liver and blood stages of Plasmodium falciparum, as well as the forms that are crucial to transmission of disease: gametocytes, zygotes, and ookinetes. A significant obstacle to the clinical development of ELQ-300 is related to its physicochemical properties. Its relatively poor aqueous solubility and high crystallinity limit absorption to the degree that only low blood concentrations can be achieved following oral dosing.

View Article and Find Full Text PDF

Single-dose therapies for malaria have been proposed as a way to reduce the cost and increase the effectiveness of antimalarial treatment. However, no compound to date has shown single-dose activity against both the blood-stage Plasmodium parasites that cause disease and the liver-stage parasites that initiate malaria infection. Here, we describe a subset of cytochrome bc1 (cyt bc1) inhibitors, including the novel 4(1H)-quinolone ELQ-400, with single-dose activity against liver, blood, and transmission-stage parasites in mouse models of malaria.

View Article and Find Full Text PDF

The cytochrome bc1 complex (cyt bc1) is the third component of the mitochondrial electron transport chain and is the target of several potent antimalarial compounds, including the naphthoquinone atovaquone (ATV) and the 4(1H)-quinolone ELQ-300. Mechanistically, cyt bc1 facilitates the transfer of electrons from ubiquinol to cytochrome c and contains both oxidative (Qo) and reductive (Qi) catalytic sites that are amenable to small-molecule inhibition. Although many antimalarial compounds, including ATV, effectively target the Qo site, it has been challenging to design selective Qi site inhibitors with the ability to circumvent clinical ATV resistance, and little is known about how chemical structure contributes to site selectivity within cyt bc1.

View Article and Find Full Text PDF

The historical antimalarial compound endochin served as a structural lead for optimization. Endochin-like quinolones (ELQ) were prepared by a novel chemical route and assessed for in vitro activity against multidrug resistant strains of Plasmodium falciparum and against malaria infections in mice. Here we describe the pathway to discovery of a potent class of orally active antimalarial 4(1H)-quinolone-3-diarylethers.

View Article and Find Full Text PDF

The pathogenic protozoan parasite Leishmania donovani is capable of both de novo pyrimidine biosynthesis and salvage of pyrimidines from the host milieu. Genetic analysis has authenticated L. donovani uracil phosphoribosyltransferase (LdUPRT), an enzyme not found in mammalian cells, as the focal enzyme of pyrimidine salvage because all exogenous pyrimidines that can satisfy the requirement of the parasite for pyrimidine nucleotides are funneled to uracil and then phosphoribosylated to UMP in the parasite by LdUPRT.

View Article and Find Full Text PDF

The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite's life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite's mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax.

View Article and Find Full Text PDF

Toxoplasma gondii is a widely distributed protozoan pathogen that causes devastating ocular and central nervous system disease. We show that the endochin-like quinolone (ELQ) class of compounds contains extremely potent inhibitors of T. gondii growth in vitro and is effective against acute and latent toxoplasmosis in mice.

View Article and Find Full Text PDF

Production of reactive oxygen species (ROS) induces oxidative damages, decreases cellular energy conversion efficiencies, and induces metabolic diseases in humans. During respiration, cytochrome bc(1) efficiently oxidizes hydroquinone to quinone, but how it performs this reaction without any leak of electrons to O(2) to yield ROS is not understood. Using the bacterial enzyme, here we show that a conserved Tyr residue of the cytochrome b subunit of cytochrome bc(1) is critical for this process.

View Article and Find Full Text PDF

Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals.

View Article and Find Full Text PDF

Mitochondrial electron transport is essential for survival in Plasmodium falciparum, making the cytochrome (cyt) bc(1) complex an attractive target for antimalarial drug development. Here we report that P. falciparum cultivated in the presence of a novel cyt bc(1) inhibitor underwent a fundamental transformation in biochemistry to a phenotype lacking a requirement for electron transport through the cyt bc(1) complex.

View Article and Find Full Text PDF

The cytochrome bc complexes found in mitochondria, chloroplasts and many bacteria play critical roles in their respective electron transport chains. The quinol oxidase (Q(o)) site in this complex oxidizes a hydroquinone (quinol), reducing two one-electron carriers, a low potential cytochrome b heme and the "Rieske" iron-sulfur cluster. The overall electron transfer reactions are coupled to transmembrane translocation of protons via a "Q-cycle" mechanism, which generates proton motive force for ATP synthesis.

View Article and Find Full Text PDF