Background And Purpose: Pituitary adenylate cyclase activating polypeptide (PACAP) is a human migraine trigger that is being targeted for migraine. The δ-opioid receptor (δ-receptor) is a novel target for the treatment of migraine, but its mechanism remains unclear. The goals of this study were to develop a mouse PACAP-headache model using clinically significant doses of PACAP; determine the effects of δ-receptor activation in this model; and investigate the co-expression of δ-receptors, PACAP and PACAP-PAC1 receptor.
View Article and Find Full Text PDFMajor depressive disorder is a highly common disorder, with a lifetime prevalence in the United States of approximately 21%. Traditional antidepressant treatments are limited by a delayed onset of action and minimal efficacy in some patients. Ketamine is effective and fast-acting, but there are concerns over its abuse liability.
View Article and Find Full Text PDFMigraine is one of the most common pain disorders and causes disability in millions of people every year. Delta opioid receptors (DOR) have been identified as a novel therapeutic target for migraine and other headache disorders. DORs are present in both peripheral and central regions and it is unclear which receptor populations regulate migraine-associated effects.
View Article and Find Full Text PDFMigraine is the sixth most prevalent disease worldwide but the mechanisms that underlie migraine chronicity are poorly understood. Cytoskeletal flexibility is fundamental to neuronal-plasticity and is dependent on dynamic microtubules. Histone-deacetylase-6 (HDAC6) decreases microtubule dynamics by deacetylating its primary substrate, α-tubulin.
View Article and Find Full Text PDFMigraine is highly prevalent and is the sixth leading cause worldwide for years lost to disability. Therapeutic options specifically targeting migraine are limited, and delta opioid receptor (DOP) agonists were recently identified as a promising pharmacotherapy. The mechanisms by which DOPs regulate migraine are currently unclear.
View Article and Find Full Text PDFDelta opioid receptor (DOR) agonists have been identified as a promising novel therapy for headache disorders. DORs are broadly expressed in several peripheral and central regions important for pain processing and mood regulation; and it is unclear which receptors regulate headache associated symptoms. In a model of chronic migraine-associated pain using the human migraine trigger, nitroglycerin, we observed increased expression of DOR in cortex, hippocampus, and striatum; suggesting a role for these forebrain regions in the regulation of migraine.
View Article and Find Full Text PDFMedication overuse headache is estimated to affect 2% of the population, and is ranked in the top 20 most disabling disorders due to its high level of disability. Several therapies used in the treatment of acute migraine are thought to be associated with medication overuse headache, including opioids and triptans. With limited treatment options, it is critical to determine the risk profile of novel therapies prior to their widespread use.
View Article and Find Full Text PDFδ-Opioid receptor (-receptor) agonists produce antihyperalgesia, antidepressant-like effects, and convulsions in animals. However, the role of agonist efficacy in generating different -receptor-mediated behaviors has not been thoroughly investigated. To this end, efficacy requirements for -receptor-mediated antihyperalgesia, antidepressant-like effects, and convulsions were evaluated by comparing the effects of the partial agonist BU48 and the full agonist SNC80 and changes in the potency of SNC80 after -receptor elimination.
View Article and Find Full Text PDFBackground And Purpose: There is a major unmet need to develop new therapies for migraine. We have previously demonstrated the therapeutic potential of the acid-sensing ion channel (ASIC) blockade in migraine, via an ASIC1 mechanism. ASIC3 is expressed in the trigeminal ganglion and its response is potentiated by NO that can trigger migraine attacks in patients.
View Article and Find Full Text PDFChronic use of opioids can produce opioid-induced hyperalgesia (OIH), and when used to treat migraine, these drugs can result in increased pain and headache chronicity. We hypothesized that overlapping mechanisms between OIH and chronic migraine occur through neuropeptide dysregulation. Using label-free, non-biased liquid chromatography-mass spectrometry to identify and measure changes in more than 1500 neuropeptides under these two conditions, we observed only 16 neuropeptides that were altered between the two conditions.
View Article and Find Full Text PDFThe benefits of opioid-based treatments to mitigate chronic pain can be hindered by the side effects of opioid-induced hyperalgesia (OIH) that can lead to higher consumption and risk of addiction. The present study advances the understanding of the molecular mechanisms associated with OIH by comparing mice presenting OIH symptoms in response to chronic morphine exposure (OIH treatment) relative to control mice (CON treatment). Using RNA-Seq profiles, gene networks were inferred in the trigeminal ganglia (TG), a central nervous system region associated with pain signaling, and in the nucleus accumbens (NAc), a region associated with reward dependency.
View Article and Find Full Text PDFThe pharmacological agent nitroglycerin (NTG) elicits hyperalgesia and allodynia in mice. This model has been used to study the neurological disorder of trigeminovascular pain or migraine, a debilitating form of hyperalgesia. The present study validates hyperalgesia in an established mouse model of chronic migraine triggered by NTG and advances the understanding of the associated molecular mechanisms.
View Article and Find Full Text PDFHeadaches are highly disabling and are among the most common neurological disorders worldwide. Despite the high prevalence of headache, therapeutic options are limited. We recently identified the delta opioid receptor (DOR) as an emerging therapeutic target for migraine.
View Article and Find Full Text PDFBackground And Purpose: Opioid δ receptor agonists are potent antihyperalgesics in chronic pain models, but tolerance develops after prolonged use. Previous evidence indicates that distinct forms of tolerance occur depending on the internalization properties of δ receptor agonists. As arrestins are important in receptor internalization, we investigated the role of arrestin 2 (β-arrestin 1) in mediating the development of tolerance induced by high- and low-internalizing δ receptor agonists.
View Article and Find Full Text PDFBackground And Purpose: GPCRs exist in multiple conformations that can engage distinct signalling mechanisms which in turn may lead to diverse behavioural outputs. In rodent models, activation of the δ opioid receptor (δ-receptor) has been shown to elicit antihyperalgesia, antidepressant-like effects and convulsions. We recently showed that these δ-receptor-mediated behaviours are differentially regulated by the GTPase-activating protein regulator of G protein signalling 4 (RGS4), which facilitates termination of G protein signalling.
View Article and Find Full Text PDFDepression is a pervasive and debilitating mental disorder that is inadequately treated by current pharmacotherapies in a majority of patients. Although opioids have long been known to regulate mood states, the use of opioids to treat depression is rarely discussed. This chapter explores the preclinical and clinical evidence supporting the antidepressant-like effects of opioid ligands, and in particular, delta opioid receptor (DOR) agonists.
View Article and Find Full Text PDFPsychopharmacology (Berl)
January 2017
Rationale: Regulator of G protein signaling (RGS) proteins act as negative modulators of G protein signaling. RGS4 has been shown to negatively modulate G protein signaling mediated by the delta opioid receptor (DOPr) in vitro. However, the role of RGS4 in modulating DOPr-mediated behaviors in vivo has not been elucidated.
View Article and Find Full Text PDF