Activation of the in vivo stress response can facilitate antibacterial host defenses. One possible mechanism for this effect is stress-induced release of heat shock protein 72 (Hsp72) into the extracellular environment. Hsp72 is a ubiquitous cellular protein that is up-regulated in response to cellular stress, and modulates various aspects of immune function including macrophage inflammatory/bactericidal responses and T-cell function when found in the extracellular environment.
View Article and Find Full Text PDFExposure to intense, acute-stressors modulates immune function. We have previously reported, for example, that exposure to a single session of inescapable tailshock suppresses acquired and potentiates innate immune responses mediated by the spleen. The mechanisms for these changes remain unknown, however, they likely involve stress-induced modulation of cytokines.
View Article and Find Full Text PDFChlamydiae are obligate intracellular bacterial pathogens that exhibit a broad range of host tropism. Differences in host tropism between Chlamydia species have been linked to host variations in IFN-gamma-mediated immune responses. In mouse cells, IFN-gamma can effectively restrict growth of the human pathogen Chlamydia trachomatis but fails to control growth of the closely related mouse pathogen Chlamydia muridarum.
View Article and Find Full Text PDFInfections caused by the bacteria Chlamydia trachomatis contribute to diverse pathologies in a variety of human populations. We previously used a systemic model of C. trachomatis infection in mice to map three quantitative trait loci that influence in vivo susceptibility differences between the C57BL/6J and C3H/HeJ inbred strains of mouse.
View Article and Find Full Text PDFBackground: Legionella pneumophila is a gram-negative bacterial pathogen that is the cause of Legionnaires' Disease. Legionella produces disease because it can replicate inside a specialized compartment of host macrophages. Macrophages isolated from various inbred mice exhibit large differences in permissiveness for intracellular replication of Legionella.
View Article and Find Full Text PDF