The FLT3-ITD mutation represents the most frequent genetic alteration in newly diagnosed acute myeloid leukemia (AML) patient and is associated with poor prognosis. Mutation result in the retention of a constitutively active form of this receptor in the endoplasmic reticulum (ER) and the subsequent modification of its downstream effectors. Here, we assessed the impact of such retention on ER homeostasis and found that mutant cells present lower levels of ER stress due to the overexpression of ERO1α, one of the main proteins of the protein folding machinery at the ER.
View Article and Find Full Text PDFGlioblastoma (GBM) treatment is extremely challenging due to the high complexity of the tumor. It is one of the tumors in which a subpopulation of highly resistant glioma initiating cells (GICs) has been clearly identified. Thus, understanding the differences between GICs and tumor bulk cells is therefore essential to move to less conventional but more efficient approaches.
View Article and Find Full Text PDFSeveral oncogenic pathways plus local microenvironmental conditions, such as hypoxia, converge on the regulation of cancer cells metabolism. The major metabolic alteration consists of a shift from oxidative phosphorylation as the major glucose consumer to aerobic glycolysis, although most of cancer cells utilize both pathways to a greater or lesser extent. Aerobic glycolysis, together with the directly related metabolic pathways such as the tricarboxylic acid cycle, the pentose phosphate pathway, or gluconeogenesis are currently considered as therapeutic targets in cancer research.
View Article and Find Full Text PDFThe FMS‑like tyrosine kinase 3 internal tandem duplication (FLT3‑ITD) mutation represents the most frequent genetic alteration in acute myeloid leukemia (AML) and is associated with poor prognosis. The mutation promotes cancer cell survival and proliferation, and shifts their glucose metabolism towards aerobic glycolysis, a frequent alteration in cancer. In the present study, the impact of melatonin on the viability of AML cell lines with (MV‑4‑11 and MOLM‑13) or without the FLT3‑ITD mutation (OCI‑AML3 and U‑937) was evaluated.
View Article and Find Full Text PDFInternal tandem duplication (ITD) or tyrosine kinase domain mutations of FLT3 is the most frequent genetic alteration in acute myelogenous leukemia (AML) and are associated with poor disease outcome. Despite considerable efforts to develop single-target FLT3 drugs, so far, the most promising clinical response has been achieved using the multikinase inhibitor midostaurin. Here, we explore the activity of the indolocarbazole EC-70124, from the same chemical space as midostaurin, in preclinical models of AML, focusing on those bearing FLT3-ITD mutations.
View Article and Find Full Text PDFMelatonin (N-acetyl-5-methoxytryptamine) is a highly pleiotropic hormone with antioxidant, antiproliferative, oncolytic and neuroprotective properties. Here, we present evidence that the N-acetyl side chain plays a key role in melatonin's antiproliferative effect in HT22 and sw-1353 cells, but it does so at the expense of antioxidant and neuroprotective properties. Removal of the N-acetyl group enhances the antioxidant and neuroprotective properties of the indole, but it can lead to toxic methamphetamine-like effects in several cell lines.
View Article and Find Full Text PDFMelatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis). Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells) and in cells where it inhibits proliferation (chondrosarcoma cells).
View Article and Find Full Text PDFGlioblastoma-initiating cells (GICs) represent a stem cell-like subpopulation within malignant glioblastomas responsible for tumor development, progression, therapeutic resistance, and tumor relapse. Thus, eradication of this subpopulation is essential to achieve stable, long-lasting remission. We have previously reported that melatonin decreases cell proliferation of glioblastoma cells both in vitro and in vivo and synergistically increases effectiveness of drugs in glioblastoma cells and also in GICs.
View Article and Find Full Text PDFIt is well established that melatonin exerts antitumoral effects in many cancer types, mostly decreasing cell proliferation at low concentrations. On the other hand, induction of apoptosis by melatonin has been described in the last few years in some particular cancer types. The cytotoxic effect occurs after its administration at high concentrations, and the molecular pathways involved have been only partially determined.
View Article and Find Full Text PDFParkinson's disease has been widely related to both apoptosis and oxidative stress. Many publications relate the loss of mitochondrial potential to an apoptosis-mediated cell death in different in vivo and in vitro models of this pathology. The present study used the dopaminegic specific neurotoxin 1-methyl-4-phenylpyridinium (MPP(+) ) on neuron-like PC12 cells, which is a well-accepted model of Parkinson's disease.
View Article and Find Full Text PDFMelatonin is an endogenous indolamine, classically known as a light/dark regulator. Besides classical functions, melatonin has also showed to have a wide range of antitumoral effects in numerous cancer experimental models. However, no definite mechanism has been described to explain the whole range of antineoplasic effects.
View Article and Find Full Text PDFIncorporation of new therapeutic agents remains as a major challenge for treatment of patients with malignant haematological disorders. Melatonin is an indolamine without relevant side effects. It has been shown previously to exhibit synergism with several chemotherapeutic drugs in Ewing sarcoma cells by potentiating the extrinsic pathway of apoptosis.
View Article and Find Full Text PDFEwing sarcoma, the second most frequent bone cancer type, affects mainly adolescents, who have a survival of 50% 5 yr after diagnosis. Current treatments include a combination of surgery, radiotherapy and chemotherapy, which present potential serious side effects. Melatonin, a natural molecule without relevant side effects, has been previously shown to induce cytotoxicity in SK-N-MC cells, a Ewing sarcoma cell line.
View Article and Find Full Text PDFDespite the common expression of death receptors, many types of cancer including gliomas are resistant to the death receptor ligand (TRAIL). Melatonin antitumoral actions have been extensively described, including oncostatic properties on several tumor types and improvement of chemotherapeutic regimens. Here, we found that melatonin effectively increase cell sensitivity to TRAIL-induced cell apoptosis in A172 and U87 human glioma cells.
View Article and Find Full Text PDFOxidative stress has been shown to mediate neuron damage in Parkinson's disease (PD). In the present report, we intend to clarify the intracellular pathways mediating dopaminergic neuron death after oxidative stress production using post-mitotic PC12 cells treated with the neurotoxin 6-hydroxydopamine (6-OHDA). The use of post-mitotic cells is crucial, because one of the suggested intracellular pathways implicated in neuron death relates to the re-entry of neurons (post-mitotic cells) in the cell cycle.
View Article and Find Full Text PDFClassical anticancer therapies often are ineffective in patients with malignant glioma who have a survival of <1 year. Our previous studies showed a potent inhibitory effect of melatonin on glioma cell proliferation. This effect seems to be mediated by the well-known antioxidant properties of this molecule and the negative regulation of some intracellular effectors, such as the kinase Akt or the transcription factor nuclear factor (NF)-kappaB.
View Article and Find Full Text PDFTumor cells are able to survive and proliferate despite the higher-than-average level of reactive oxygen species (ROS) they exhibit. This is generally taken as a clue as to the implications of ROS in cell proliferation. In fact many mitogenic intracellular signaling pathways could be redox regulated, more particularly those involving tyrosine kinase receptors (RTK).
View Article and Find Full Text PDFThe pineal hormone melatonin has neuroprotective effects in a large number of models of neurodegeneration. Melatonin crosses the blood-brain barrier, shows a decrease in its nocturnal peaks in blood with age that has been associated with the development of neurodegenerative disorders, and has been shown to be harmless at high concentrations. These properties make melatonin a potential therapeutic agent against neurodegenerative disorders but the pathways involved in such neuroprotective effects remain unknown.
View Article and Find Full Text PDFTryptamine derivatives are a family of biogenic amines that have been suggested to be modulators of brain function at physiological concentrations. However, pharmacological concentrations of these amines display amphetamine-like properties, and they seem to play a role in brain disorders. Amphetamines induce autophagy in nerve cells, and this type of cell death has also been involved in neurodegenerative diseases.
View Article and Find Full Text PDFLow concentrations (nanomolar) of melatonin had been previously shown to inhibit cell proliferation in several cancer cell lines as well as in experimental animal models. Additionally, cell growth inhibition and differentiation of prostate cancer cell lines by high concentrations (micromolar to millimolar) of melatonin have been recently reported. In the present paper, we show the induction of apoptosis by high doses of melatonin in the human neuroblastoma cell line SK-N-MC.
View Article and Find Full Text PDFMelatonin is an indolamine mostly produced in the pineal gland, soluble in water, and highly lipophilic, which allows it to readily cross the blood-brain barrier. Melatonin possesses antioxidant properties and its long-term administration in rodents has not been found to cause noteworthy side effects. In the present work, we found that millimolar concentrations of this indolamine reduced cell growth of C6 glioma cells by 70% after 72 hours of treatment, inhibiting cell progression from G(1) to S phase of the cell cycle.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is characterized by a progressive loss of dopamine in the substantia nigra and striatum. However, over 70% of dopaminergic neuronal death occurs before the first symptoms appear, which makes either early diagnosis or effective treatments extremely difficult.
View Article and Find Full Text PDFThe election of the correct loading control in Northern blot normalization is something essential to obtain valid results. Housekeeping genes are widely used as loading control and the assumption is made that they counteract load differences between samples. We have found, however, that uneven sample load is capable to alter the results despite normalization, considering no influence of the experimental conditions on housekeeping gene regulation takes place.
View Article and Find Full Text PDFIn the present paper, we report a strong intracellular antioxidant activity of the sesquiterpene lactone parthenolide in the hippocampal HT22 cells. This effect is mediated by an increase of total glutathione at both, low (5 microM) and high (10 microM), concentrations. Parthenolide also increases the activation of the antioxidant/electrophile response element.
View Article and Find Full Text PDFStructural relationship between the antioxidant melatonin and the non-benzodiazepine hypnotic zolpidem (ZPD) suggests possible direct antioxidant and neuroprotective properties of this compound. In the present work, these effects were analyzed for zolpidem and four of its synthesis intermediates. In vitro assays include lipid peroxidation and protein oxidation studies in liver and brain homogenates.
View Article and Find Full Text PDF