Publications by authors named "Isaac Adanyeguh"

Objective: Spinocerebellar ataxia type 2 (SCA2) is a rare, inherited neurodegenerative disease characterised by progressive deterioration in both motor coordination and cognitive function. Atrophy of the cerebellum, brainstem, and spinal cord are core features of SCA2, however the evolution and pattern of whole-brain atrophy in SCA2 remain unclear. We undertook a multi-site, structural magnetic resonance imaging (MRI) study to comprehensively characterize the neurodegeneration profile of SCA2.

View Article and Find Full Text PDF
Article Synopsis
  • Localized shimming in single-voxel MRS can cause significant B inhomogeneity outside the targeted area, impacting image quality during motion correction.
  • A modified fast motion navigator was developed to address these issues by using multiple shot interleaves, resulting in improved image quality while maintaining a short scanning duration.
  • This approach allows effective motion correction for MRS by reducing the impact of B inhomogeneity, leading to better spectral quality in both stationary and moving subjects.
View Article and Find Full Text PDF

Purpose: To develop a fast high-resolution image-based motion correction method using spiral navigators with multislice-to-volume registration.

Methods: A semi-LASER sequence was modified to include a multislice spiral navigator for prospective motion correction (∼305 ms including acquisition, processing, and feedback) as well as shim and frequency navigators for prospective shim and frequency correction (∼100 ms for each). MR spectra were obtained in the prefrontal cortex in five healthy subjects at 3 T with and without prospective motion and shim correction.

View Article and Find Full Text PDF

Purpose: To develop prospective motion correction for single-voxel MRS in the human cervical spinal cord.

Methods: A motion MR navigator was implemented using reduced field-of-view 2D-selective RF excitation together with EPI readout. A short-echo semi-LASER sequence (T  = 30 ms) was updated to incorporate this real-time image-based motion navigator, as well as real-time shim and frequency navigators.

View Article and Find Full Text PDF

Friedreich ataxia is a progressive neurodegenerative disorder characterized by cerebellar and spinal atrophy. However, studies to elucidate the longitudinal progression of the pathology in the brain are somewhat inconsistent and limited, especially for early-stage Friedreich ataxia. Using a multimodal neuroimaging protocol, combined with advanced analysis methods, we sought to identify macrostructural and microstructural alterations in the brain of patients with early-stage Friedreich ataxia to better understand its distribution patterns and progression.

View Article and Find Full Text PDF

Background: Recent advances in MRI acquisitions and image analysis have increased the utility of neuroimaging in understanding disease-related changes. In this work, we aim to demonstrate increased sensitivity to disease progression as well as improved diagnostic accuracy in Amyotrophic lateral sclerosis (ALS) with multimodal MRI of the brain and cervical spinal cord.

Methods: We acquired diffusion MRI data from the brain and cervical cord, and T1 data from the brain, of 20 participants with ALS and 20 healthy control participants.

View Article and Find Full Text PDF

Background And Objectives: Friedreich ataxia (FRDA) is an autosomal recessive ataxia with no approved treatments. Leriglitazone is a selective peroxisome proliferator-activated receptor γ agonist that crosses the blood-brain barrier and, in preclinical models, improved mitochondrial function and energy production. We assessed effects of leriglitazone in patients with FRDA in a proof-of-concept study.

View Article and Find Full Text PDF

Introduction: Drug development for neurodegenerative diseases such as Friedreich's ataxia (FRDA) is limited by a lack of validated, sensitive biomarkers of pharmacodynamic response in affected tissue and disease progression. Studies employing neuroimaging measures to track FRDA have thus far been limited by their small sample sizes and limited follow up. TRACK-FA, a longitudinal, multi-site, and multi-modal neuroimaging natural history study, aims to address these shortcomings by enabling better understanding of underlying pathology and identifying sensitive, clinical trial ready, neuroimaging biomarkers for FRDA.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates spinal cord damage in Friedreich's ataxia (FRDA) using MRI data from a large cohort, revealing significant reductions in cervical spinal cord cross-sectional area compared to controls.
  • There is a strong correlation between decreased cross-sectional area and disease severity, while despite increased eccentricity, it does not correlate with clinical symptoms.
  • The findings suggest that damage in the dorsal column and corticospinal tract progresses differently in FRDA, indicating that cross-sectional area could serve as a potential biomarker for monitoring disease progression.
View Article and Find Full Text PDF

Friedreich ataxia is the most common hereditary ataxia. Atrophy of the spinal cord is one of the hallmarks of the disease. MRI and magnetic resonance spectroscopy are powerful and non-invasive tools to investigate pathological changes in the spinal cord.

View Article and Find Full Text PDF
Article Synopsis
  • The article DOI: 10.3389/fneur.2020.00411 has been corrected.
  • This correction addresses inaccuracies or updates in the original publication.
  • Readers should refer to the corrected text for the most accurate information.
View Article and Find Full Text PDF

Behavioral activities that require control over automatic routines typically feel effortful and result in cognitive fatigue. Beyond subjective report, cognitive fatigue has been conceived as an inflated cost of cognitive control, objectified by more impulsive decisions. However, the origins of such control cost inflation with cognitive work are heavily debated.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the cerebellum in paroxysmal kinesigenic dyskinesia (PKD), a condition causing involuntary movements, highlighting the limited understanding of its underlying mechanisms.
  • Twenty-two patients with a specific genetic variant and matched controls participated in a comprehensive neuroimaging study to assess brain structures and connections related to PKD.
  • Results showed significant gray and white matter changes in the cerebellum and other related brain areas, with cerebellar stimulation improving the communication within motor networks, suggesting a potential therapeutic avenue.
View Article and Find Full Text PDF

Huntington's disease (HD) is a monogenic, fully penetrant neurodegenerative disorder. Widespread white matter damage affects the brain of patients with HD at very early stages of the disease. Fixel-based analysis (FBA) is a novel method to investigate the contribution of individual crossing fibers to the white matter damage and to detect possible alterations in both fiber density and fiber-bundle morphology.

View Article and Find Full Text PDF

Neurofilament light chain (NfL) is a marker of brain atrophy and predictor of disease progression in rare diseases such as Huntington Disease, but also in more common neurological disorders such as Alzheimer's disease. The aim of this study was to measure NfL longitudinally in autosomal dominant spinocerebellar ataxias (SCAs) and establish correlation with clinical and imaging parameters. We enrolled 62 pathological expansions carriers (17 SCA1, 13 SCA2, 19 SCA3, and 13 SCA7) and 19 age-matched controls in a prospective biomarker study between 2011 and 2015 and followed for 24 months at the Paris Brain Institute.

View Article and Find Full Text PDF

Objective: Progressive myelopathy causes severe handicap in men with adrenomyeloneuropathy (AMN), an X-linked disorder due to ABCD1 pathogenic variants. At present, treatments are symptomatic but disease-modifying therapies are under evaluation. Given the small effect size of clinical scales in AMN, biomarkers with higher effect size are needed.

View Article and Find Full Text PDF

Development of imaging biomarkers for rare neurodegenerative diseases such as spinocerebellar ataxia (SCA) is important to non-invasively track progression of disease pathology and monitor response to interventions. Diffusion MRI (dMRI) has been shown to identify cross-sectional degeneration of white matter (WM) microstructure and connectivity between healthy controls and patients with SCAs, using various analysis methods. In this paper, we present dMRI data in SCAs type 1, 2, 3, and 6 and matched controls, including longitudinal acquisitions at 12-24-month intervals in a subset of the cohort, with up to 5 visits.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 7 (SCA7) is a retinal-cerebellar degenerative disorder caused by CAG-polyglutamine (polyQ) repeat expansions in the ataxin-7 gene. As many SCA7 clinical phenotypes occur in mitochondrial disorders, and magnetic resonance spectroscopy of patients revealed altered energy metabolism, we considered a role for mitochondrial dysfunction. Studies of SCA7 mice uncovered marked impairments in oxygen consumption and respiratory exchange.

View Article and Find Full Text PDF

Specific magnetic resonance imaging (MRI) markers of myelin are critical for the evaluation and development of regenerative therapies for demyelinating diseases. Several MRI methods have been developed for myelin imaging, based either on acquisition schemes or on mathematical modeling of the signal. They generally showed good sensitivity but validation for specificity toward myelin is still warranted to allow a reliable interpretation in an in vivo complex pathological environment.

View Article and Find Full Text PDF

Objective: As gene-based therapies may soon arise for patients with spinocerebellar ataxia (SCA), there is a critical need to identify biomarkers of disease progression with effect sizes greater than clinical scores, enabling trials with smaller sample sizes.

Methods: We enrolled a unique cohort of patients with SCA1 ( = 15), SCA2 ( = 12), SCA3 ( = 20) and SCA7 ( = 10) and 24 healthy controls of similar age, sex and body mass index. We collected longitudinal clinical and imaging data at baseline and follow-up (mean interval of 24 months).

View Article and Find Full Text PDF

Mutations in the gene encoding polymerase gamma (POLG) are a common cause of mitochondrial diseases in adults. We retrospectively analyzed volumetric and diffusion tensor imaging data from 20 adult POLG-mutated patients compared to healthy controls. We used an original clinical binary load score and electroneuromyography to evaluate disease severity.

View Article and Find Full Text PDF

The striatum is a well-known region affected in Huntington disease (HD). However, other regions, including the visual cortex, are implicated. We have identified previously an abnormal energy response in the visual cortex of patients at an early stage of HD using P magnetic resonance spectroscopy ( P MRS).

View Article and Find Full Text PDF

The growing number of modalities (e.g. multi-omics, imaging and clinical data) characterizing a given disease provides physicians and statisticians with complementary facets reflecting the disease process but emphasizes the need for novel statistical methods of data analysis able to unify these views.

View Article and Find Full Text PDF

Background: Based on the hypothesis of a brain energy deficit, we investigated the safety and efficacy of triheptanoin on paroxysmal episodes in patients with alternating hemiplegia of childhood due to ATP1A3 mutations.

Methods: We conducted a randomized, double-blind, placebo-controlled crossover study of triheptanoin, at a target dose corresponding to 30% of daily calorie intake, in ten patients with alternating hemiplegia of childhood due to ATP1A3 mutations. Each treatment period consisted of a 12-week fixed-dose phase, separated by a 4-week washout period.

View Article and Find Full Text PDF

Background: Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by a wide clinical spectrum and non-specific conventional magnetic resonance imaging (MRI) signs. As substrate reduction therapy with miglustat is now used in almost all patients, its efficacy and the course of the disease are sometimes difficult to evaluate. Neuroimaging biomarkers could prove useful in this matter.

View Article and Find Full Text PDF