Publications by authors named "Isaac A Zlochower"

Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithiumiron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS).

View Article and Find Full Text PDF

Correctly applied rock dust can dilute, inert, and mitigate the explosive potential of float coal dust. Trickle dusters are one element of a comprehensive system to help prevent coal dust explosions in underground coal mines. Trickle dusters supply rock dust to inert fine float coal dust in areas where it is commonly deposited, such as the longwall tailgate returns, return airways, pillaring areas, and downwind of belt transfers.

View Article and Find Full Text PDF

The relationship between the explosion inerting effectiveness of rock dusts on coal dusts, as a function of the specific surface area (cm/g) of each component is examined through the use of 20-L explosion chamber testing. More specifically, a linear relationship is demonstrated for the rock dust to coal dust (or incombustible to combustible) content of such inerted mixtures with the specific surface area of the coal and the inverse of that area of the rock dust. Hence, the inerting effectiveness, defined as above, is more generally linearly dependent on the ratio of the two surface areas.

View Article and Find Full Text PDF

Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.

View Article and Find Full Text PDF

The Mine Safety and Health Administration (MSHA) specification for rock dust used in underground coal mines, as defined by 30 CFR 75.2, requires 70% of the material to pass through a 200 mesh sieve (<75 µm). However, in a collection of rock dusts, 47% were found to not meet the criteria.

View Article and Find Full Text PDF

The utility and limitations of adiabatic flame temperature calculations and minimum mixture energies in predicting the temperature dependence of flammability limits are explored. The limiting flame temperatures at constant pressure (1 bar) are calculated using a standard widely-used thermodynamic computer program. The computation is based on the calculated limiting flame temperature value at the reference initial temperature and the experimental limit concentration.

View Article and Find Full Text PDF