Publications by authors named "Isa T"

Mammals can execute intended limb movements despite the fact that spinal reflexes involuntarily modulate muscle activity. To generate appropriate muscle activity, the cortical descending motor output must coordinate with spinal reflexes, yet the underlying neural mechanism remains unclear. We simultaneously recorded activities in motor-related cortical areas, afferent neurons, and forelimb muscles of monkeys performing reaching movements.

View Article and Find Full Text PDF
Article Synopsis
  • During recovery from spinal cord injury in macaques, the unaffected side of the sensorimotor cortex becomes crucial in controlling movements of the injured hand.
  • Effective movement regulation involves not just sending motor commands directly to muscles, but also requires coordination with higher-level brain systems, like the cortico-basal ganglia and cortico-cerebellar loops.
  • The study found that following injury, there was an increase in axonal projections from the affected motor cortex to key brain regions, suggesting these changes help activate the unaffected cortex to support movement recovery on the impaired side.
View Article and Find Full Text PDF

Marmosets are expected to serve as a valuable model for studying the primate visuomotor system due to their similar oculomotor behaviors to humans and macaques. Despite these similarities, differences exist; challenges in training marmosets on tasks requiring suppression of unwanted saccades, having consistently shorter, yet more variable saccade reaction times (SRT) compared to humans and macaques. This study investigates whether the short and variable SRT in marmosets is related to differences in visual signal transduction and variability in inhibitory control.

View Article and Find Full Text PDF

Whether and how the non-lesional sensorimotor cortex is activated and contributes to post-injury motor recovery is controversial. Here, we investigated the role of interhemispheric pathway from the contralesional to ipsilesional premotor cortex in activating the ipsilesional sensorimotor cortex and promoting recovery after lesioning the lateral corticospinal tract at the cervical cord, by unidirectional chemogenetic blockade in macaques. The blockade impaired dexterous hand movements during the early recovery stage.

View Article and Find Full Text PDF

Decision-making is always coupled with some level of risk, with more pathological forms of risk-taking decisions manifesting as gambling disorders. In macaque monkeys trained in a high risk-high return (HH) versus low risk-low return (LL) choice task, we found that the reversible pharmacological inactivation of ventral Brodmann area 6 (area 6V) impaired the risk dependency of decision-making. Selective optogenetic activation of the mesofrontal pathway from the ventral tegmental area (VTA) to the ventral aspect of 6V resulted in stronger preference for HH, whereas activation of the pathway from the VTA to the dorsal aspect of 6V led to LL preference.

View Article and Find Full Text PDF

The nature of subjective conscious experience, which accompanies us throughout our waking lives, and how it is generated, remain elusive. One of the challenges in studying subjective experience is disentangling the brain activity related to the sensory stimulus processing and stimulus-guided behavior from those associated with subjective perception. Blindsight, a phenomenon characterized by the retained visual discrimination performance but impaired visual consciousness due to damage to the primary visual cortex, becomes a special entry point to address this question.

View Article and Find Full Text PDF

Classical literature on blindsight described that some patients with lesions to the primary visual cortex could respond to visual stimuli without subjective awareness. Recent studies addressed more complex arguments on the conscious state of blindsight subjects such as existence of partial awareness, namely "feeling of something happening" in the lesion-affected visual field, termed 'type II blindsight', and high-level performance in complex cognitive tasks in blindsight model monkeys. Endeavors to clarify the visual pathways for blindsight revealed the parallel thalamic routes mediating the visual inputs from the superior colliculus to extrastriate and frontoparietal cortices, which may underlie the flexible visuomotor association and cognitive control in the blindsight subjects.

View Article and Find Full Text PDF

Rationale And Objectives: Macromolecules (MMs) affect the precision and accuracy of neurochemical quantification in magnetic resonance spectroscopy. A measured MM basis is increasingly used in LCModel analysis combined with a spline baseline, whose stiffness is controlled by a parameter named DKNTMN. The effects of measured MM basis and DKNTMN were investigated.

View Article and Find Full Text PDF

We investigated morphologic changes in the corticospinal tract (CST) to understand the mechanism underlying recovery of hand function after lesion of the CST at the C4/C5 border in seven macaque monkeys. All monkeys exhibited prominent recovery of precision grip success ratio within a few months. The trajectories and terminals of CST from the contralesional ( = 4) and ipsilesional ( = 3) hand area of primary motor cortex (M1) were investigated at 5-29 months after the injury using an anterograde neural tracer, biotinylated dextran amine (BDA).

View Article and Find Full Text PDF

Background: Sensitive detection and quantification of cerebral glucose is desired.

Purpose: To quantify cerebral glucose by detecting the H1-α-glucose peak at 5.23 ppm in H magnetic resonance spectroscopy at 7 T.

View Article and Find Full Text PDF

Future neuroscience and biomedical projects involving non-human primates (NHPs) remain essential in our endeavors to understand the complexities and functioning of the mammalian central nervous system. In so doing, the NHP neuroscience researcher must be allowed to incorporate state-of-the-art technologies, including the use of novel viral vectors, gene therapy and transgenic approaches to answer continuing and emerging research questions that can only be addressed in NHP research models. This perspective piece captures these emerging technologies and some specific research questions they can address.

View Article and Find Full Text PDF

The claustrum coordinates the activities of individual cortical areas through abundant reciprocal connections with the cerebral cortex. Although these excitatory connections have been extensively investigated in three subregions of the claustrum-core region and dorsal and ventral shell regions-the contribution of GABAergic neurons to the circuitry in each subregion remains unclear. Here, we examined the distribution of GABAergic neurons and their dendritic and axonal arborizations in each subregion.

View Article and Find Full Text PDF

Patients with damage to the primary visual cortex (V1) can respond correctly to visual stimuli in their lesion-affected visual field above the chance level, an ability named blindsight. Here, we present a protocol for making an animal model of blindsight in macaque monkeys. We describe the steps to perform pre-lesion training of monkeys on a visual task, followed by lesion surgery, post-lesion training, and evaluation of blindsight.

View Article and Find Full Text PDF

Breast implant-associated infections (BIAIs) are the primary complication following placement of breast prostheses in breast cancer reconstruction. Given the prevalence of breast cancer, reconstructive failure due to infection results in significant patient distress and health care expenditures. Thus, effective BIAI prevention strategies are urgently needed.

View Article and Find Full Text PDF

Descending motor drive and somatosensory feedback play important roles in modulating muscle activity. Numerous studies have characterized the organization of neuronal connectivity in which descending motor pathways and somatosensory afferents converge on spinal motor neurons as a final common pathway. However, how inputs from these two pathways are integrated into spinal motor neurons to generate muscle activity during actual motor behavior is unknown.

View Article and Find Full Text PDF

Through phylogeny, novel neural circuits are added on top of ancient circuits. Upon injury of a novel circuit which enabled fine control, the ancient circuits can sometimes take over its function for recovery; however, the recovered function is limited according to the capacity of the ancient circuits. In this review, we discuss two examples of functional recovery after neural injury in nonhuman primate models.

View Article and Find Full Text PDF

Background: This study investigated the effect of different components of screen time (mobile phone use, TV/video viewing, and video gaming) on cardiorespiratory fitness (CRF) development in children aged 9-12 years.

Methods: This was a two-year longitudinal study conducted with 175 children (49.7% girls, mean age = 9.

View Article and Find Full Text PDF

Tyramide signal amplification (TSA) is a highly sensitive method for histochemical analysis. Previously, we reported a TSA system, biotinyl tyramine-glucose oxidase (BT-GO), for bright-filed imaging. Here, we develop fluorochromized tyramide-glucose oxidase (FT-GO) as a multiplex fluorescent TSA system.

View Article and Find Full Text PDF

Background: Lewy body diseases (LBDs), which are pathologically defined as the presence of intraneuronal α-synuclein (α-Syn) inclusions called Lewy bodies, encompass Parkinson's disease, Parkinson's disease with dementia, and dementia with Lewy bodies. Autopsy studies have shown that the olfactory bulb (OB) is one of the regions where Lewy pathology develops and initiates its spread in the brain.

Objective: This study aims to clarify how Lewy pathology spreads from the OB and affects brain functions using nonhuman primates.

View Article and Find Full Text PDF

The epidermis is the outermost layer of the skin and the body's primary barrier to external pathogens; however, the early epidermal immune response remains to be mechanistically understood. We show that the chemokine CXCL14, produced by epidermal keratinocytes, exhibits robust circadian fluctuations and initiates innate immunity. Clearance of the skin pathogen in nocturnal mice was associated with CXCL14 expression, which was high during subjective daytime and low at night.

View Article and Find Full Text PDF

Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders.

View Article and Find Full Text PDF

This study aimed to investigate whether abnormal gait patterns are associated with experiencing an elevated degree of pain after daily walking. In this preliminary, cross-sectional study, 223 community-dwelling older adults were assessed for pain experienced after daily walking using a simple question that involved asking the subject about their past experiences of an elevated degree of pain after walking for 400 m or more. Gait patterns were assessed using the Comprehensive Gait Assessment using InerTial Sensor score (C-GAITS score), derived from the data measured by Inertial sensors attached to the lower trunk and heel when subjects walked along a 15 m walkway at a self-selected preferred speed.

View Article and Find Full Text PDF

Motivation boosts motor performance. Activity of the ventral midbrain (VM), consisting of the ventral tegmental area (VTA), the substantia nigra pars compacta (SNc) and the retrorubral field (RRF), plays an important role in processing motivation. However, little is known about the neural substrate bridging the VM and the spinal motor output.

View Article and Find Full Text PDF

The mammalian brain is organized over sizes that span several orders of magnitude, from synapses to the entire brain. Thus, a technique to visualize neural circuits across multiple spatial scales (multi-scale neuronal imaging) is vital for deciphering brain-wide connectivity. Here, we developed this technique by coupling successive light microscopy/electron microscopy (LM/EM) imaging with a glutaraldehyde-resistant tissue clearing method, ScaeSF.

View Article and Find Full Text PDF

The present study was conducted to examine the feasibility of in vitro embryo production and transfer technologies for producing piglets of Agu, an Okinawan indigenous pig breed. After collection of oocytes from surgically dissected ovaries, they were subjected to in vitro maturation. After in vitro maturation/fertilization, a total of 616 putative embryos were transferred into four commercial Western pig recipients, one of which became pregnant and farrowed a total of eight Agu piglets.

View Article and Find Full Text PDF