Cancer is a debilitating disease that is on the increase in both developed and developing countries. Anticancer drugs are often expensive, have narrow spectrum of activities, and are associated with toxicities and side effects such as myelosuppression, immunosuppression, gastrointestinal disturbance, alopecia, skin toxicity, and hepatotoxicity. Plants have been the major source of anticancer drugs both in orthodox and traditional medicine.
View Article and Find Full Text PDFIncidence of cancer is estimated to be on the increase and current anticancer drugs are characterized by narrow margin of safety and side effects. There is the need to explore new drugs especially from plants since plants serve as major source of drugs. Fresen plant is called the mother of all medicines in northern Nigeria and is used traditionally in the treatment of cancers by most traditional medicine practitioners in the region.
View Article and Find Full Text PDFAfr J Tradit Complement Altern Med
September 2017
Background: Linn (Lamiaceae) is used in traditional medicine for its calming (tranquilizing) effects. The aim of this study was to determine whether there is any scientific justification for this use. To achieve this purpose, we investigated the behavioural effects of the methanol extract of stem (37.
View Article and Find Full Text PDFObjectives: Securinega virosa Roxb (Ex Willd) Baill (Euphorbaiceae) root bark has been reportedly used in African traditional medicine in the management of mental illnesses. Previously, the sleep-inducing potential of the crude methanol root bark of Securinega virosa extract and its butanol fraction have been reported. The study aimed to isolate and characterize the bioactive constituent that may be responsible for the sleep inducing property of the root of the plant.
View Article and Find Full Text PDFNeoplasms of the brain are often overlooked in resource-limited countries. Our literature search via AJOL and PubMed demonstrated that brain tumor research is still a rarity in these regions. We highlight the current status, importance, challenges, and methods of improving brain tumor research in West Africa.
View Article and Find Full Text PDFProgress in research on the molecular aspects of glioblastoma has yet to provide a medical therapy that significantly improves prognosis. Glioblastoma invariably progress through current treatment regimens with radiotherapy as a key component. Activation of several signaling pathways is thought to be associated with this resistance to radiotherapy.
View Article and Find Full Text PDFEthnopharmacological Relevance: Securinega virosa is a commonly used medicinal plant in African traditional medicine in the management of epilepsy and mental illness. Previous studies in our laboratory showed that the crude methanol root bark extract of the plant possesses significant behavioral effect in laboratory animals. In an attempt to isolate and characterize the biological principles responsible for the observed activity, this study is aimed at evaluating the central depressant activity of the butanol fraction of the methanol root bark extract of Securinega virosa.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs) play important roles in the regulation of GBM pathophysiology.
Methods: STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA) of glioma patient tissues.
Isolation of glioblastoma stem cells requires incubation of tumor cells in a neural stem cell media. Neurospheres containing these glioblastoma stem cells are formed after approximately a five-day period. These cells can then be analyzed for the presence of stem cell markers.
View Article and Find Full Text PDFAim: Protein kinase-C (PKC) and NF-kappaB are involved in cell survival, proliferation, migration and radioresistance in glioblastoma multiforme (GBM). We sought to determine the interaction between PKC and NF-kappaB pathways.
Material And Methods: The activation of NF-kappaB by PKC alpha and PKC delta was assessed by Western blotting after the stimulation with Phorbol 12- Myristate 13-Acetate (PMA).
One of the major pathophysiological features of malignant astrocytomas is their ability to infiltrate surrounding brain tissue. The epidermal growth factor receptor (EGFR) and proteases are known to be overexpressed in glioblastomas (GBMs), but the interaction between the activation of the EGFR and urokinase plasminogen activator (uPA) in promoting astrocytic tumor invasion has not been fully elucidated. Here, we characterized the signal transduction pathway(s) by which EGF regulates uPA expression and promotes astrocytoma invasion.
View Article and Find Full Text PDFThe lack of an intracranial human glioma model that recapitulates the extensive invasive and hypervascular features of glioblastoma (GBM) is a major hurdle for testing novel therapeutic approaches against GBM and studying the mechanism of GBM invasive growth. We characterized a high matrix metalloproteinase-9 (MMP-9) expressing U1242 MG intracranial xenograft mouse model that exhibited extensive individual cells and cell clusters in a perivascular and subpial cellular infiltrative pattern, geographic necrosis and infiltrating tumor-induced vascular proliferation closely resembling the human GBM phenotype. MMP-9 silencing cells with short hairpin RNA dramatically blocked the cellular infiltrative pattern, hypervascularity, and cell proliferation in vivo, and decreased cell invasion, colony formation, and cell motility in vitro, indicating that a high level of MMP-9 plays an essential role in extensive infiltration and hypervascularity in the xenograft model.
View Article and Find Full Text PDFAtaxia telangiectasia (A-T) mutated (ATM) is critical for cell cycle checkpoints and DNA repair. Thus, specific small molecule inhibitors targeting ATM could perhaps be developed into efficient radiosensitizers. Recently, a specific inhibitor of the ATM kinase, KU-55933, was shown to radiosensitize human cancer cells.
View Article and Find Full Text PDFCushing's disease is caused by an ACTH-producing pituitary tumor, and accounts for 10-15% of pituitary tumors. The majority of corticotroph tumors are microadenomas (<10 mm), and accurate histologic identification of these tumors can be challenging because of their small size and the presence of nests of normal corticotroph cells in the anterior pituitary. Retinoic acid has been shown to inhibit ACTH production and induce apoptosis in corticotroph tumor cells.
View Article and Find Full Text PDFMMPs (matrix metalloproteinases) and the related "a disintegrin and metalloproteinases" (ADAMs) promote tumorigenesis by cleaving extracellular matrix and protein substrates, including N-cadherin. Although N-cadherin is thought to regulate cell adhesion, migration, and invasion, its role has not been characterized in glioblastomas (GBMs). In this study, we investigated the expression and function of posttranslational N-cadherin cleavage in GBM cells as well as its regulation by protein kinase C (PKC).
View Article and Find Full Text PDFPrevious study reported that the activation of Ras pathway cooperated with E6/E7-mediated inactivation of p53/pRb to transform immortalized normal human astrocytes (NHA/hTERT) into intracranial tumors strongly resembling human astrocytomas. The mechanism of how H-Ras contributes to astrocytoma formation is unclear. Using genetically modified NHA cells (E6/E7/hTERT and E6/E7/hTERT/Ras cells) as models, we investigated the mechanism of Ras-induced tumorigenesis.
View Article and Find Full Text PDFPrevious reports showed that urokinase plasminogen activator (uPA) converts plasminogen to plasmin which then activates matrix metalloproteinases (MMPs). Here, we report that uPA directly cleaved pro-MMP-9 in a time-dependent manner at both C- and N-terminus and generated two gelatinolytic bands. uPA-activated-MMP-9 efficiently degraded fibronectin and blocked by uPA inhibitor B428 and recombinant tissue inhibitor of metalloproteinase-1 (TIMP-1).
View Article and Find Full Text PDFWe show, for the first time, that the tumor suppressor PTEN can have tumor-promoting properties. We show that PTEN acquires these unexpected properties by enhancing gain-of-function mutant p53 (mut-p53) protein levels. We find that PTEN restoration to cells harboring mut-p53 leads to induction of G(1)-S cell cycle progression and cell proliferation and to inhibition of cell death.
View Article and Find Full Text PDFAggressive and infiltrative invasion is one of the hallmarks of glioblastoma. Low-density lipoprotein receptor-related protein (LRP) is expressed by glioblastoma, but the role of this receptor in astrocytic tumor invasion remains poorly understood. We show that activation of protein kinase C-alpha (PKC-alpha) phosphorylated and down-regulated LRP expression.
View Article and Find Full Text PDFObject: We analyzed MMP-9 expression using mRNA and protein level determinations and explored the possibility that matrix metalloproteinase-9 (MMP-9) is a potential biological marker of pituitary adenoma invasiveness and whether MMP-9 could be used to discriminate the extent of invasiveness among different hormonal subtypes, tumor sizes, growth characteristics, and primary versus recurrent tumors.
Materials And Methods: 73 pituitary tumor specimens were snap frozen in liquid nitrogen immediately after surgical resection. RNA and protein were extracted.
The complete resection of pituitary adenomas (PAs) is unlikely when there is an extensive local dural invasion and given that the molecular mechanisms remain primarily unknown. DNA microarray analysis was performed to identify differentially expressed genes between nonfunctioning invasive and noninvasive PAs. Gene clustering revealed a robust eightfold increase in matrix metalloproteinase (MMP)-9 expression in surgically resected human invasive PAs and in the (nonfunctioning) HP75 human pituitary tumor-derived cell line treated with phorbol-12-myristate-13-acetate; these results were confirmed by real-time polymerase chain reaction, gelatin zymography, reverse transcriptase-polymerase chain reaction, Western blot, immunohistochemistry, and Northern blot analyses.
View Article and Find Full Text PDFRenewal of nongermative epithelia is poorly understood. The novel mitogen "lacritin" is apically secreted by several nongermative epithelia. We tested 17 different cell types and discovered that lacritin is preferentially mitogenic or prosecretory for those types that normally contact lacritin during its glandular outward flow.
View Article and Find Full Text PDFApolipoprotein E (apoE) is synthesized mainly in the liver and in the brain and is critical for cholesterol metabolism and recovery from brain injury. However, although apoE mRNA increases at birth, during suckling, and after fasting in rat liver, little is known about its role in early postnatal development. Using an established postnatal malnutrition model and apoE knock-out (ko) mice, we examined the role of apoE in intestinal adaptation responses to early postnatal malnutrition.
View Article and Find Full Text PDFGliomas are the most common major subgroup of primary CNS tumours. Approximately 17,000 new cases are reported each year and, of these, 11,500 patients die. Glioblastoma multiforme (GBM) is highly proliferative and typically invades distal portions of the brain, thereby making complete surgical resection of these tumours nearly impossible.
View Article and Find Full Text PDF