Publications by authors named "Isa Anshori"

Hyperinflammation is a significant factor in long COVID, impacting over 65 million post-COVID-19 individuals globally. Herbal remedies, including propolis, show promise in reducing severity and pro-inflammatory cytokines. However, the natural pharmacological role of propolis in COVID-19 management remains underexplored.

View Article and Find Full Text PDF

Cardiovascular disease has reached a mortality rate of 470,000 patients each year. Myocardial infarction accounts for 49.2% of these deaths, and the cTnI protein is a crucial target in diagnosing myocardial infarction.

View Article and Find Full Text PDF

Gold nanodendrite (AuND) is a type of gold nanoparticles with dendritic or branching structures that offers advantages such as large surface area and high conductivity to improve electrocatalytic performance of electrochemical sensors. AuND structures can be synthesized using electrodeposition method utilizing cysteine as growth directing agent. This method can simultaneously synthesize and integrate the gold nanostructures on the surface of the electrode.

View Article and Find Full Text PDF

Cardiac troponin I (cTnI) is a cardiac biomarker for diagnosing ischemic heart disease and acute myocardial infarction. Current biochemical assays use antibodies (Abs) due to their high specificity and sensitivity. However, there are some limitations, such as the high-cost production of Abs due to complex instruments, reagents, and steps; the variability of Abs quality from batch to batch; the low stability at high temperatures; and the difficulty of chemical modification.

View Article and Find Full Text PDF

Microbial fuel cells (MFCs) are an emerging technology that holds promise for renewable energy production and the mitigation of environmental challenges. This research paper introduces a single-compartment MFC reactor that utilizes transparent conducting oxides (TCOs), such as fluorine-doped tin oxide (FTO) and indium tin oxides (ITO), as the working electrodes. The effectiveness of MFCs based on FTO and ITO was evaluated by characterizing the transparent electrode and examining its performance during biofilm cultivation.

View Article and Find Full Text PDF

In this study, ceramic materials of Mg(TiSn)Owere synthesized and decorated on reduced graphene oxide, forming a nanocomposite of rGO/Mg(TiSn)O(rGO/MTS001). The successful synthesis results were confirmed by XRD, UV-vis analysis, FT-IR, and SEM-EDS. The MTS001 has a flower-like morphology from scanning electron microscopy (SEM) analysis, and the nanocomposites of rGO/MTS001 showed MTS001 particles decorated on the rGO's surface.

View Article and Find Full Text PDF

Breast cancer is the most commonly diagnosed cancer globally, with the highest incidence of breast cancer occurring in Asian countries including Indonesia. Among the types of breast cancer, the estrogen receptor (ER)-positive subtype which is prominent with estrogen receptor alpha () and heat shock protein 90 () overexpression genes becomes the most prevalent than the others, approximately 75% of all breast cancer cases. ERα and HSP90 play a role in breast cancer activities including breast tumor growth, invasion, and metastasis mechanism.

View Article and Find Full Text PDF

In this study, we demonstrate a facile, durable, and inexpensive technique of producing silver nanoparticles-decorated multi-walled carbon nanotubes (MWCNT/AgNP) on the easy-to-use screen-printed carbon electrodes (SPCE) for non-enzymatic detection of uric acid (UA) in an electrochemical sensor. The developed sensors show great durability for three months in storage, and high specificity performance for preclinical study using spiked UA in a synthetic urine sample. A simple route for this hybrid nanocomposite was proposed through an oxidation-reduction with reflux (ORR) process.

View Article and Find Full Text PDF

Aptamers are single-stranded DNA or RNA that bind to specific targets such as proteins, thus having similar characteristics to antibodies. It can be synthesized at a lower cost, with no batch-to-batch variations, and is easier to modify chemically than antibodies, thus potentially being used as therapeutic and biosensing agents. The current method for RNA aptamer identification in vitro uses the SELEX method, which is considered inefficient due to its complex process.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in monitoring analyte concentrations have led to the development of a cotton-based electrochemical device (mFED) designed for continuous glucose monitoring.
  • The mFED utilizes techniques like stencil printing and wax-patterning to create its electrodes and reaction zones, demonstrating effective performance through the chronoamperometry method.
  • With a working glucose concentration range of 0-20 mM and potential for wearability, the mFED can operate effectively even under mechanical stress.
View Article and Find Full Text PDF

The gold layer on the surface plasmon resonance (SPR) sensor chip cannot detect small molecules, such as glucose without the use of specific receptors. Metal-organic frameworks (MOFs) are useful in biosensing technologies for capturing and co-localizing enzymes and receptors with the target biomolecule. In many previous studies, the properties of the MOFs were often ignored, with these studies focusing on the selection of appropriate receptors.

View Article and Find Full Text PDF

The coronavirus disease 2019 outbreak has become a huge challenge in the human sector for the past two years. The coronavirus is capable of mutating at a higher rate than other viruses. Thus, an approach for creating an effective vaccine is still needed to induce antibodies against multiple variants with lower side effects.

View Article and Find Full Text PDF

A detection method based on an electrochemical aptasensor has been developed as an alternative fast, portable, simple, inexpensive, and high-accuracy detection method for detecting the SARS-CoV-2 Spike Receptor Binding Domain (spike RBD). The CeO@NH functionalized Screen Printed Carbon Electrode (SPCE) was used to immobilize an aminated aptamer of spike RBD protein glutaraldehyde as a linker. The aptamer's interaction with the SARS-CoV-2 Spike RBD was measured the [Fe(CN)] redox system signal.

View Article and Find Full Text PDF

Two years after SARS-CoV-2 caused the first case of COVID-19, we are now in the "new normal" period, where people's activity has bounced back, followed by the easing of travel policy restrictions. The lesson learned is that the wide availability of accurate and rapid testing procedures is crucial to overcome possible outbreaks in the future. Therefore, many laboratories worldwide have been racing to develop a new point-of-care diagnostic test.

View Article and Find Full Text PDF

In the present study, numerically iterative models are employed to study two processes involved in the pulsed laser deposition of an YFeO target. The 1D conduction heat model is used to evaluate the temperature of the target irradiated by a nano-second pulse laser, taking into account the plasma shielding effect. Further, the gas dynamics model is employed to simulate the kinetic of plasma plume expansion.

View Article and Find Full Text PDF

We demonstrated potential features of gold nanoparticle bipyramid (AuNB) for an electrochemical biosensor. The facile synthesis method and controllable shape and size of the AuNB are achieved through the optimization of cetyltrimethylammonium chloride (CTAC) surfactant over citric acid (CA) ratio determining the control of typically spherical Au seed size and its transition into a penta-twinned crystal structure. We observe that the optimized ratio of CTAC and CA facilitates flocculation control in which Au seeds with size as tiny as ∼14.

View Article and Find Full Text PDF

We present a low-cost and simple method to fabricate a novel lock-and-key mixer microfluidics using an economic stereolithography (SLA) three-dimensional (3D) printer, which costs less than USD 400 for the investment. The proposed study is promising for a high throughput fabrication module, typically limited by conventional microfluidics fabrications, such as photolithography and polymer-casting methods. We demonstrate the novel modular lock-and-key mixer for the connector and its chamber modules with optimized parameters, such as exposure condition and printing orientation.

View Article and Find Full Text PDF

Present-day science indicates that developing sensors with excellent sensitivity and selectivity for detecting early signs of diseases is highly desirable. Electrochemical sensors offer a method for detecting diseases that are simpler, faster, and more accurate than conventional laboratory analysis methods. Primarily, exploiting non-noble-metal nanomaterials with excellent conductivity and large surface area is still an area of active research due to its highly sensitive and selective catalysts for electrochemical detection in enzyme-free sensors.

View Article and Find Full Text PDF