Unlabelled: Self-defensive antibiotic-loaded coatings have shown promise in inhibiting growth of pathogenic bacteria adhering to biomaterial implants and devices, but direct proof that their antibacterial release is triggered by bacterially-induced acidification of the immediate environment under buffered conditions remained elusive. Here, we demonstrate that Staphylococcus aureus and Escherichia coli adhering to such coatings generate highly localized acidification, even in buffered conditions, to activate pH-triggered, self-defensive antibiotic release. To this end, we utilized chemically crosslinked layer-by-layer hydrogel coatings of poly(methacrylic acid) with a covalently attached pH-sensitive SNARF-1 fluorescent label for imaging, and unlabeled-antibiotic (gentamicin or polymyxin B) loaded coatings for antibacterial studies.
View Article and Find Full Text PDFTitanium is often applied in implant surgery, but frequently implicated in infections associated with bacterial adhesion and growth on the implant surface. Here, we show that hierarchical nanostructuring of titanium and the subsequent coating of resulting topographical features with a self-defensive, antibacterial layer-by-layer (LbL) film enables a synergistic action of hierarchical nanotopography and localized, bacteria-triggered antibiotic release to dramatically enhance the antibacterial efficiency of surfaces. Although sole nanostructuring of titanium substrates did not significantly affect adhesion and growth of Staphylococcus aureus, the coating of 3D-nanopillared substrates with an ultrathin tannic acid/gentamicin (TA/G) LbL film resulted in a 10-fold reduction of the number of surface-attached bacteria.
View Article and Find Full Text PDFWe report on the effect of the deposition technique on film layering, stability, and chain mobility in weak polyelectrolyte layer-by-layer (LbL) films. Ellipsometry and neutron reflectometry (NR) showed that shear forces arising during spin-assisted assembly lead to smaller amounts of adsorbed polyelectrolytes within LbL films, result in a higher degree of internal film order, and dramatically improve stability of assemblies in salt solutions as compared to dip-assisted LbL assemblies. The underlying flattening of polyelectrolyte chains in spin-assisted LbL films was also revealed as an increase in ionization degree of the assembled weak polyelectrolytes.
View Article and Find Full Text PDFWe report on highly efficient, bioresponsive, controlled-release antibacterial coatings constructed by direct assembly of tannic acid (TA) with one of several cationic antibiotics (tobromycin, gentamicin, and polymyxin B) using the layer-by-layer (LbL) technique. These films exhibit a distinct “self-defense” behavior triggered by acidification of the immediate environment by pathogenic bacteria, such as Staphylococcus epidermidis (S. epidermidis) or Escherichia coli (E.
View Article and Find Full Text PDF