Publications by authors named "Iryna Huryeva"

Both SM proteins (for Sec1/Munc18-like proteins) and SNARE proteins (for soluble NSF-attachment protein receptors) are essential for intracellular membrane fusion, but the general mechanism of coupling between their functions is unclear, in part because diverse SM protein/SNARE binding modes have been described. During synaptic vesicle exocytosis, the SM protein Munc18-1 is known to bind tightly to the SNARE protein syntaxin-1, but only when syntaxin-1 is in a closed conformation that is incompatible with SNARE complex formation. We now show that Munc18-1 also binds tightly to assembled SNARE complexes containing syntaxin-1.

View Article and Find Full Text PDF

alpha-RIMs and Munc13s are active zone proteins that control priming of synaptic vesicles to a readily releasable state, and interact with each other via their N-terminal sequences. The alpha-RIM N-terminal sequence also binds to Rab3s (small synaptic vesicle GTPases), an interaction that regulates presynaptic plasticity. We now demonstrate that alpha-RIMs contain adjacent but separate Munc13- and Rab3-binding sites, allowing formation of a tripartite Rab3/RIM/Munc13 complex.

View Article and Find Full Text PDF

Sec1/Mun18-like (SM) proteins and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play central roles in intracellular membrane fusion. Diverse modes of interaction between SM proteins and SNAREs from the syntaxin family have been described. However, the observation that the N-terminal domains of Sly1 and Vps45, the SM proteins involved in traffic at the endoplasmic reticulum, the Golgi, the trans-Golgi network and the endosomes, bind to similar N-terminal sequences of their cognate syntaxins suggested a unifying theme for SM protein/SNARE interactions in most internal membrane compartments.

View Article and Find Full Text PDF

Cleavage of amyloid-beta precursor protein (APP) by site-specific proteases generates amyloid-beta peptides (Abetas), which are thought to induce Alzheimer's disease. We have identified an independently folded extracellular domain of human APP localized proximal to the Abeta sequence, and determined the three-dimensional structure of this domain by NMR spectroscopy. The domain is composed of four alpha-helices, three of which form a tight antiparallel bundle, and constitutes the C-terminal half of the central extracellular region of APP that has been implicated in the regulation of APP cleavage.

View Article and Find Full Text PDF

Sec1Munc18-like (SM) proteins functionally interact with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) in membrane fusion, but the mechanisms of these interactions differ. In vertebrates, SM proteins that mediate exocytosis (Munc18-1, 18-2, and 18c) bind to the closed conformation of syntaxins 1-4, which requires the N-terminal H(abc) domains and SNARE motifs of these syntaxins. In contrast, SM proteins that mediate Golgi and endoplasmic reticulum fusion (Sly1 and Vps45) bind only to short N-terminal sequences of syntaxins 5, 16, or 18, independently of their H(abc) domains and SNARE motifs.

View Article and Find Full Text PDF

Soluble N-ethylmaleimide sensitive factor-attachment protein receptors (SNAREs) and Sec1p/Munc18-homologs (SM proteins) play key roles in intracellular membrane fusion. The SNAREs form tight four-helix bundles (core complexes) that bring the membranes together, but it is unclear how this activity is coupled to SM protein function. Studies of the yeast trans-Golgi network (TGN)/endosomal SNARE complex, which includes the syntaxin-like SNARE Tlg2p, have suggested that its assembly requires activation by binding of the SM protein Vps45p to the cytoplasmic region of Tlg2p folded into a closed conformation.

View Article and Find Full Text PDF