C fullerene has received great attention as a candidate for biomedical applications. Due to unique structure and properties, C fullerene nanoparticles are supposed to be useful in drug delivery, photodynamic therapy (PDT) of cancer, and reversion of tumor cells' multidrug resistance. The aim of this study was to elucidate the possible molecular mechanisms involved in photoexcited C fullerene-dependent enhancement of cisplatin toxicity against leukemic cells resistant to cisplatin.
View Article and Find Full Text PDFCisplatin (Cis-Pt) is the cytotoxic agent widely used against tumors of various origin, but its therapeutic efficiency is substantially limited by a non-selective effect and high toxicity. Conjugation of Cis-Pt with nanocarriers is thought to be one option to enable drug targeting. The aim of this study was to estimate toxic effects of the nanocomplex formed by noncovalent interaction of C fullerene with Cis-Pt against Lewis lung carcinoma (LLC) cells in comparison with free drug.
View Article and Find Full Text PDFBackground: Doxorubicin (Dox) is one of the most potent anticancer drugs, but its successful use is hampered by high toxicity caused mainly by generation of reactive oxygen species. One approach to protect against Dox-dependent chemical insult is combined use of the cytostatic drug with antioxidants. C60 fullerene has a nanostructure with both antioxidant and antitumor potential and may be useful in modulating cell responses to Dox.
View Article and Find Full Text PDFAn increase of the intracellular reactive oxygen species (ROS) concentration leads to the development of oxidative stress and, thus, to the damage of cell components. The cause-and-effect relations between these processes have not been fully established yet. The ability of photo excited supramolecular composites containing fullerenes C60 immobilized at nanosilica particles to generate reactive oxygen species (ROS) in cells of two types (rat thymocytes, and transformed cells of ascite Erlich carcinoma, EAC, and leucosis L1210) is demonstrated.
View Article and Find Full Text PDF