Acute myeloid leukemia (AML) is characterized by poor clinical outcomes due to high rates of relapse following standard-of-care induction chemotherapy. While many pathogenic drivers have been described in AML, our understanding of the molecular mechanisms mediating chemotherapy resistance remains poor. Therefore, we sought to identify resistance genes to induction therapy in AML and elucidated ALOX5 as a novel mediator of resistance to anthracycline-based therapy.
View Article and Find Full Text PDFDespite significant efforts to improve therapies for acute myeloid leukemia (AML), clinical outcomes remain poor. Understanding the mechanisms that regulate the development and maintenance of leukemic stem cells (LSCs) is important to reveal new therapeutic opportunities. We have identified CD97, a member of the adhesion class of G protein-coupled receptors (GPCRs), as a frequently up-regulated antigen on AML blasts that is a critical regulator of blast function.
View Article and Find Full Text PDFTo identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal administration of 10 mg/kg cocaine or saline for 7 days. A total of 102 distinct peptides were identified in one or more of the following brain regions: nucleus accumbens, caudate putamen, frontal cortex, and ventral tegmental area. None of the peptides detected in the caudate putamen or frontal cortex were altered by cocaine administration.
View Article and Find Full Text PDFCytosolic carboxypeptidase 5 (CCP5) is a member of a subfamily of enzymes that cleave C-terminal and/or side chain amino acids from tubulin. CCP5 was proposed to selectively cleave the branch point of glutamylated tubulin, based on studies involving overexpression of CCP5 in cell lines and detection of tubulin forms with antisera. In the present study, we examined the activity of purified CCP5 toward synthetic peptides as well as soluble α- and β-tubulin and paclitaxel-stabilized microtubules using a combination of antisera and mass spectrometry to detect the products.
View Article and Find Full Text PDFCytosolic carboxypeptidase 1 (CCP1) is a metallopeptidase that removes C-terminal and side-chain glutamates from tubulin. The Purkinje cell degeneration (pcd) mouse lacks CCP1 due to a mutation. Previously, elevated levels of peptides derived from cytosolic and mitochondrial proteins were found in adult pcd mouse brain, raising the possibility that CCP1 functions in the degradation of intracellular peptides.
View Article and Find Full Text PDFInt J Neuropsychopharmacol
August 2013
Cpe(fat/fat) mice have a point mutation in carboxypeptidase E (Cpe), an exopeptidase that removes C-terminal basic amino acids from intermediates to produce bioactive peptides. The mutation renders the enzyme inactive and unstable. The absence of Cpe activity in these mutants leads to abnormal processing of many peptides, with elevated levels of intermediates and greatly reduced levels of the mature peptides.
View Article and Find Full Text PDFPeptides represent a major class of cell-cell signaling molecules. Most peptidomic studies have focused on peptides present in brain or other tissues. For a peptide to function in intercellular signaling, it must be secreted.
View Article and Find Full Text PDFBortezomib is an antitumor drug that competitively inhibits proteasome beta-1 and beta-5 subunits. While the impact of bortezomib on protein stability is known, the effect of this drug on intracellular peptides has not been previously explored. A quantitative peptidomics technique was used to examine the effect of treating human embryonic kidney 293T (HEK293T) cells with 5-500 nM bortezomib for various lengths of time (30 minutes to 16 hours), and human neuroblastoma SH-SY5Y cells with 500 nM bortezomib for 1 hour.
View Article and Find Full Text PDFThe Purkinje cell degeneration (pcd) mouse has a disruption in the gene encoding cytosolic carboxypeptidase 1 (CCP1). This study tested two proposed functions of CCP1: degradation of intracellular peptides and processing of tubulin. Overexpression (2-3-fold) or knockdown (80-90%) of CCP1 in human embryonic kidney 293T cells (HEK293T) did not affect the levels of most intracellular peptides but altered the levels of α-tubulin lacking two C-terminal amino acids (delta2-tubulin) ≥ 5-fold, suggesting that tubulin processing is the primary function of CCP1, not peptide degradation.
View Article and Find Full Text PDFProSAAS is the precursor of a number of peptides that have been proposed to function as neuropeptides. Because proSAAS mRNA is highly expressed in the arcuate nucleus of the hypothalamus, we examined the cellular localization of several proSAAS-derived peptides in the mouse hypothalamus and found that they generally colocalized with neuropeptide Y (NPY), but not α-melanocyte stimulating hormone. However, unlike proNPY mRNA, which is upregulated by food deprivation in the mediobasal hypothalamus, neither proSAAS mRNA nor proSAAS-derived peptides were significantly altered by 1-2 days of food deprivation in wild-type mice.
View Article and Find Full Text PDFPurkinje cell degeneration (pcd) is a mouse mutant which is characterized by postnatal degeneration of selective cell types. The pcd mutation was mapped to a gene encoding a cytosolic carboxypeptidase-like protein (CCP), named CCP1/Nna1. Many neurons in pcd mice show increased levels of autophagy, including cell types which do not undergo neurodegeneration.
View Article and Find Full Text PDFPurkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum.
View Article and Find Full Text PDFQuantitative peptidomics was used to compare levels of peptides in wild type (WT) and Cpe(fat/fat) mice, which lack carboxypeptidase E (CPE) activity because of a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in WT mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria.
View Article and Find Full Text PDFSample preparation for neuropeptidomic studies is a critical issue since protein degradation can produce high levels of peptides that obscure the endogenous neuropeptides. We compared different extraction conditions for the recovery of neuropeptides and the formation of protein breakdown fragments from mouse hypothalami. Sonication and heating in water (70 degrees C for 20 min) followed by cold acid and centrifugation enabled the efficient extraction of many neuropeptides without the formation of protein degradation fragments seen with hot acid extractions.
View Article and Find Full Text PDFNna1 is a recently described gene product that has sequence similarity with metallocarboxypeptidases. In the present study, five additional Nna1-like genes were identified in the mouse genome and named cytosolic carboxypeptidase (CCP) 2 through 6. Modeling suggests that the carboxypeptidase domain folds into a structure that resembles metallocarboxypeptidases of the M14 family, with all necessary residues for catalytic activity and broad substrate specificity.
View Article and Find Full Text PDFThe biosynthesis of most neuropeptides and peptide hormones requires a carboxypeptidase such as carboxypeptidase E, which is inactive in Cpe(fat/fat) mice due to a naturally occurring point mutation. To assess the role of carboxypeptidase E in the processing of peptides in the prefrontal cortex, we used a quantitative peptidomics approach to examine the relative levels of peptides in Cpe(fat/fat) versus wild-type mice. Peptides representing internal fragments of prohormones and other secretory pathway proteins were decreased two- to 10-fold in the Cpe(fat/fat) mouse prefrontal cortex compared with wild-type tissue.
View Article and Find Full Text PDF