In the 1960s, my lab was interested in understanding how bilirubin and other organic anions are transferred from the plasma through the liver cell and into the bile. We performed gel filtration of liver supernatants and identified two protein fractions, designated Y and Z, which bound organic anions including bilirubin, and thus we proposed that they were involved in hepatic uptake of organic anions from plasma. Subsequently, the Y and Z proteins responsible for this binding activity were purified, cloned, and sequenced.
View Article and Find Full Text PDFMitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species.
View Article and Find Full Text PDFHepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery.
View Article and Find Full Text PDFInherited disorders of bilirubin metabolism might reduce bilirubin uptake by hepatocytes, bilirubin conjugation, or secretion of bilirubin into bile. Reductions in uptake could increase levels of unconjugated or conjugated bilirubin (Rotor syndrome). Defects in bilirubin conjugation could increase levels of unconjugated bilirubin; the effects can be benign and frequent (Gilbert syndrome) or rare but severe, increasing the risk of bilirubin encephalopathy (Crigler-Najjar syndrome).
View Article and Find Full Text PDFPolarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter.
View Article and Find Full Text PDFFreshly isolated, depolarized rat hepatocytes can repolarize into bile canalicular networks when plated in collagen sandwich cultures. We studied the events underlying this repolarization process, focusing on how hepatocytes restore ATP synthesis and resupply biosynthetic precursors after the stress of being isolated from liver. We found that soon after being plated in collagen sandwich cultures, hepatocytes converted their mitochondria into highly fused networks.
View Article and Find Full Text PDFCell polarization requires increased cellular energy and metabolic output, but how these energetic demands are met by polarizing cells is unclear. To address these issues, we investigated the roles of mitochondrial bioenergetics and autophagy during cell polarization of hepatocytes cultured in a collagen sandwich system. We found that as the hepatocytes begin to polarize, they use oxidative phosphorylation to raise their ATP levels, and this energy production is required for polarization.
View Article and Find Full Text PDFThe stoichiometry and composition of membrane protein receptors are critical to their function. However, the inability to assess receptor subunit stoichiometry in situ has hampered efforts to relate receptor structures to functional states. Here, we address this problem for the asialoglycoprotein receptor using ensemble FRET imaging, analytical modeling, and single-molecule counting with photoactivated localization microscopy (PALM).
View Article and Find Full Text PDFIn the 1960s, my lab was interested in understanding how bilirubin and other organic anions are transferred from the plasma through the liver cell and into the bile. We performed gel filtration of liver supernatants and identified two protein fractions, designated Y and Z, which bound organic anions including bilirubin, and thus we proposed that they were involved in hepatic uptake of organic anions from plasma. Subsequently, the Y and Z proteins responsible for this binding activity were purified, cloned, and sequenced.
View Article and Find Full Text PDFWe recently discovered that the major mammalian bile acid, taurocholate, accelerated polarity in primary rat hepatocytes. Taurocholate increased cellular cAMP and signals through an Epac-Rap1-MEK-LKB1-AMPK pathway for its polarity effect. This review discusses possible mechanisms for how taurocholate affects different cell polarity factors, particularly AMPK, and thereby regulates events that generate polarity.
View Article and Find Full Text PDFOverexpression of P-glycoprotein (P-gp) is a major cause of multidrug resistance in cancer. P-gp is mainly localized in the plasma membrane and can efflux structurally and chemically unrelated substrates, including anticancer drugs. P-gp is also localized in intracellular compartments, such as endoplasmic reticulum (ER), Golgi, endosomes and lysosomes, and cycles between endosomal compartments and the plasma membrane in a microtubular-actin dependent manner.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2011
This study describes a unique function of taurocholate in bile canalicular formation involving signaling through a cAMP-Epac-MEK-Rap1-LKB1-AMPK pathway. In rat hepatocyte sandwich cultures, polarization was manifested by sequential progression of bile canaliculi from small structures to a fully branched network. Taurocholate accelerated canalicular network formation and concomitantly increased cAMP, which were prevented by adenyl cyclase inhibitor.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK), a cellular metabolic sensor, is essential in energy regulation and metabolism. Hepatocyte polarization during liver development and regeneration parallels increased metabolism. The current study investigates the effects of AMPK and its upstream activator LKB1 on polarity and bile canalicular network formation and maintenance in collagen sandwich cultures of rat hepatocytes.
View Article and Find Full Text PDFArthrogryposis, renal dysfunction and cholestasis syndrome (ARC) is a multisystem disorder associated with abnormalities in polarized liver and kidney cells. Mutations in VPS33B account for most cases of ARC. We identified mutations in VIPAR (also called C14ORF133) in individuals with ARC without VPS33B defects.
View Article and Find Full Text PDFObjective: Fenestrations are pores in the liver sinusoidal endothelium that facilitate the transfer of particulate substrates between the sinusoidal lumen and hepatocytes. Fenestrations express caveolin-1 and have structural similarities to caveolae, therefore might be a form of caveolae and caveolin-1 may be integral to fenestration structure and function. Therefore, fenestrations were studied in the livers of caveolin-1 knockout mice.
View Article and Find Full Text PDFSerum amyloid A (SAA) is a major acute phase protein involved in multiple physiological and pathological processes. This study provides experimental evidence that CD36, a phagocyte class B scavenger receptor, functions as a novel SAA receptor mediating SAA proinflammatory activity. The uptake of Alexa Fluor 488 SAA as well as of other well established CD36 ligands was increased 5-10-fold in HeLa cells stably transfected with CD36 when compared with mock-transfected cells.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2008
To study the regulation of fenestrations by vascular endothelial growth factor in liver sinusoidal endothelial cells, SK Hep1 cells were transfected with green fluorescence protein (GFP)-actin and GFP-caveolin-1. SK Hep1 cells had pores; some of which appeared to be fenestrations (diameter 55 +/- 28 nm, porosity 2.0 +/- 1.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2008
Progressive familial cholestasis (PFIC) 2 and benign recurrent intrahepatic cholestasis (BRIC) 2 are caused by mutations in the bile salt export pump (BSEP, ABCB11) gene; however, their prognosis differs. PFIC2 progresses to cirrhosis and requires liver transplantation, whereas BRIC2 is clinically benign. To identify the molecular mechanism(s) responsible for the phenotypic differences, eight PFIC2 and two BRIC2 mutations were introduced in rat Bsep, which was transfected in MDCK II cells.
View Article and Find Full Text PDFUnderstanding how epithelial cells generate and maintain polarity and function requires live cell imaging. In order for cells to become fully polarized, it is necessary to grow them on a permeable membrane filter; however, the translucent filter obstructs the microscope light path required for quantitative live cell imaging. Alternatively, the membrane filter may be excised but this eliminates selective access to apical and basolateral surfaces.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2007
The aim of this study was to determine the role of N-linked glycosylation in protein stability, intracellular trafficking, and bile acid transport activity of the bile salt export pump [Bsep (ATP-binding cassette B11)]. Rat Bsep was fused with yellow fluorescent protein, and the following mutants, in which Asn residues of putative glycosylation sites (Asn(109), Asn(116), Asn(122), and Asn(125)) were sequentially replaced with Gln, were constructed by site-directed mutagenesis: single N109Q, double N109Q + N116Q, triple N109Q + N116Q + N122Q, and quadruple N109Q + N116Q + N122Q + N125Q. Immunoblot and glycosidase cleavage analysis demonstrated that each site was glycosylated.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2006
Biliary excretion is the rate-limiting step in transfer of bilirubin, other organic anions, and xenobiotics across the liver. Multidrug resistance-associated protein 2 (Mrp2, Abcc2) is the major transporter for conjugated endo- and xenobiotic-conjugated compounds into bile. Hormones regulate bilirubin and xenobiotic secretion into bile, which have dimorphic differences.
View Article and Find Full Text PDF