Publications by authors named "Irwin Fridovich"

Can the superoxide radical exert deleterious effects independent of participating with HO in the production of the hydroxyl radical? Examination of the superoxide-related literature reveals data suggesting an affirmative answer to this question. © 1986 Academic Press, Inc.

View Article and Find Full Text PDF

Several compounds have been found capable of diverting the electron flow in Escherichia coli and thus causing increased intracellular production of O and HO. One indication of this electron-shunting action was increased cyanide-resistant respiration and one cellular response was increased biosynthesis of the manganese-containing superoxide dismutase and of catalase. Blocking cytochrome oxidase with cyanide or azide increased the electron flow available for reduction of paraquat and presumably of the other exogenous compounds tested and thus increased their biological effects.

View Article and Find Full Text PDF
Oxygen: how do we stand it?

Med Princ Pract

August 2013

The electronic structure of ground state oxygen, which is essential for the life of all aerobic organisms, makes it potentially dangerous for those organisms. Atmospheric oxygen contains two unpaired electrons with parallel spin states, which predisposes it to reduction by a univalent pathway. As a consequence, normal aerobic metabolism generates dangerous reactive intermediates of the reduction of O2.

View Article and Find Full Text PDF

The family of superoxide dismutases (SODs) are well known for their antioxidant actions exerted by catalyzing the conversion of O(2)(·-) into H(2)O(2) plus oxygen. The importance of this action is revealed by the multiple phenotypic deficits exhibited by a variety of organisms that have been made to lack one or more of the SODs. Never the less there have been reports of deleterious consequences caused by overproduction of SOD.

View Article and Find Full Text PDF

In addition to its very efficient catalysis of the dismutation of superoxide ( O(2)(-) ) into O(2) plus H(2)O(2), Cu, Zn SOD acts less efficiently as a non-specific peroxidase. This peroxidase activity is CO(2) dependent although very slow peroxidation of some substrates occurs in the absence of CO2. The mechanism of that CO(2) dependence is explained by the generation of a strong oxidant at the copper site by two sequential reactions with H(2)O(2), followed by the oxidation of CO(2) to the carbonate radical that then diffuses into the bulk solution.

View Article and Find Full Text PDF

The Cu,Zn-superoxide dismutase (SOD1) has been reported to exert an S-nitrosylated glutathione (GSNO) denitrosylase activity that was augmented by a familial amyotrophic lateral sclerosis (FALS)-associated mutation in this enzyme. This putative enzymatic activity as well as the spontaneous decomposition of GSNO has been reexamined. The spontaneous decomposition of GSNO exhibited several peculiarities, such as a lag phase followed by an accelerating rate plus a marked dependence on GSNO concentration, suggestive of autocatalysis, and a greater rate in polypropylene than in glass vessels.

View Article and Find Full Text PDF

Numerous reports of the effects of overproduction of SODs have been explained on the basis of increased H2O2 production by the catalyzed dismutation of O2-. In this review we consider the effects of increasing [SOD] on H2O2 formation and question this explanation.

View Article and Find Full Text PDF

Cu,Zn SOD is known to be inactivated by HO(2)(-) and to be protected against that inactivation by a number of small molecules including formate, imidazole, and urate. This inactivation has been shown to be due to oxidation of a ligand field histidine residue by a bound oxidant formed by reaction of the active site Cu(II) with HO(2)(-). We now report that protective actions of both formate and NADH increase as the pH was raised in the range 8.

View Article and Find Full Text PDF

Human Cu,Zn-superoxide dismutase (hSOD1) has 4 cysteines per subunit. Cys57 and Cys148 are involved in an intrasubunit disulfide bond, while Cys6 and Cys111 are free. Cys6 is buried within the protein while Cys111 is on the surface, near the dimer interface.

View Article and Find Full Text PDF

Transition metals, such as Cu(+2), Mn(+2), and Co(+2), have been seen to catalyze the bicarbonate enhanced oxidation of a variety of substrates by H(2)O(2). In several of these cases it has been demonstrated that CO(2), rather than bicarbonate, is the enhancing species. Mechanisms that are in accord with the data involve a hypervalent state that may be written (MO)(+n), or (MOH)(+n+1), or (M)(+n+2).

View Article and Find Full Text PDF

Two new tri(ethyleneglycol)-derivatized Mn(III) porphyrins were synthesized with the aim of increasing their bioavailability, and blood-circulating half-life. These are Mn(III) tetrakis(N-(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)pyridinium-2-yl)porphyrin, MnTTEG-2-PyP5+ and Mn(III) tetrakis(N,N'-di(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)imidazolium-2-yl)porphyrin, MnTDTEG-2-ImP5+. Both porphyrins have ortho pyridyl or di-ortho imidazolyl electron-withdrawing substituents at meso positions of the porphyrin ring that assure highly positive metal centered redox potentials, E1/2 = +250 mV vs.

View Article and Find Full Text PDF

Augmentation, by CO(2)/HCO(3)(-), of Co(II)-catalyzed peroxidations was explored to clarify whether the rate enhancement was due to CO(2) or to HCO(3)(-). The rate of oxidation of NADH by Co(II) plus H(2)O(2), in Tris or phosphate, was markedly enhanced by CO(2)/HCO(3)(-). Phosphate was seen to inhibit the Co(II)-catalyzed peroxidation, probably due to its sequestration of the Co(II).

View Article and Find Full Text PDF

The absence of SOD1 in yeast has been found to result in inactivation of Lys4p. This [4Fe-4S]-containing dehydratase is in the pathway of biosynthesis of lysine, hence the oxygen-dependent lysine auxotrophy seen in this case. O(2)(-) is known to oxidize and thus destabilize the [Fe-4S] clusters of dehydratases; hence, this would make perfect sense were it not for the fact that SOD1 localizes to the cytosol and the intermembrane space of mitochondria, whereas Lys4p localizes to the mitochondrial matrix.

View Article and Find Full Text PDF

Mn(II) can catalyze the decomposition of H(2)O(2) and, in the presence of H(2)O(2), can catalyze the oxidation of NADH. Strikingly, these processes depend on the simultaneous presence of both CO(2) and HCO(3)(-). This explains the exponential dependence of the rates on [HCO(3)(-)], previously noted by other workers.

View Article and Find Full Text PDF

Three new Mn(III) porphyrin catalysts of O2.-dismutation (superoxide dismutase mimics), bearing ether oxygen atoms within their side chains, were synthesized and characterized: Mn(III) 5,10,15,20-tetrakis[N-(2-methoxyethyl)pyridinium-2-yl]porphyrin (MnTMOE-2-PyP(5+)), Mn(III)5,10,15,20-tetrakis[N-methyl-N'-(2-methoxyethyl)imidazolium-2-yl]porphyrin (MnTM,MOE-2-ImP(5+)) and Mn(III) 5,10,15,20-tetrakis[N,N'-di(2-methoxyethyl)imidazolium-2-yl]porphyrin (MnTDMOE-2-ImP(5+)). Their catalytic rate constants for O2.

View Article and Find Full Text PDF

Cationic Mn(III) porphyrins substituted on the methine bridge carbons (meso positions) with N-alkylpyridinium or N,N'-diethylimidazolium groups have been prepared and characterized, both chemically and as SOD mimics. The ortho tetrakis N-methylpyridinium compound was substantially more active than the corresponding para isomer. This ortho compound also exhibited a more positive redox potential and greater ability to facilitate the aerobic growth of a SOD-deficient Escherichia coli.

View Article and Find Full Text PDF

Mn(III) ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin (Mn(III)TE-2-PyP(5+)) effectively scavenges reactive oxygen and nitrogen species in vitro, and protects in vivo, in different rodent models of oxidative stress injuries. Further, Mn(III)TE-2-PyP(5+) was shown to be readily reduced by cellular reductants such as ascorbic acid and glutathione. We now show that tetrahydrobiopterin (BH(4)) is also able to reduce the metal center.

View Article and Find Full Text PDF