Publications by authors named "Irving N Weinberg"

Article Synopsis
  • The article with DOI: 10.3389/fonc.2024.1405404 has been revised or corrected.
  • This correction may include updates or clarifications to the original findings or data presented in the article.
  • Readers are encouraged to review the corrected version for the most accurate and up-to-date information.
View Article and Find Full Text PDF

Miniaturization of medical tools promises to revolutionize surgery by reducing tissue trauma and accelerating recovery. Magnetic untethered devices, with their ability to access hard-to-reach areas without physical connections, emerge as potential candidates for such miniaturization. Despite the benefits, these miniature devices face challenges regarding force and torque outputs, restricting their ability to perform tasks requiring mechanical interactions such as tissue penetration and manipulation.

View Article and Find Full Text PDF
Article Synopsis
  • - Contrast-enhanced breast MRI is recommended for high-risk women but has limitations, such as false positives and increased patient anxiety due to hormonal sensitivity and the potential for overdiagnosis.
  • - Breast-targeted PET imaging offers higher specificity and can detect cancers regardless of breast density or hormonal fluctuations, although traditional PET involves high radiation levels, limiting its use in some cases.
  • - A case study using the low-dose Radialis PET imager for a 33-year-old patient highlighted its ability to detect lesions with low metabolic activity; however, it did not reveal any malignant areas in this instance, resulting in surgical interventions for tumor removal.
View Article and Find Full Text PDF

Magnetically manipulated medical robots are a promising alternative to current robotic platforms, allowing for miniaturization and tetherless actuation. Controlling such systems autonomously may enable safe, accurate operation. However, classical control methods require rigorous models of magnetic fields, robot dynamics, and robot environments, which can be difficult to generate.

View Article and Find Full Text PDF

Magnetic actuation holds promise for wirelessly controlling small, magnetic surgical tools and may enable the next generation of ultra minimally invasive surgical robotic systems. Precise torque and force exertion are required for safe surgical operations and accurate state control. Dipole field estimation models perform well far from electromagnets but yield large errors near coils.

View Article and Find Full Text PDF

The field of magnetic robotics aims to obviate physical connections between the actuators and end-effectors. Such tetherless control may enable new ultra-minimally invasive surgical manipulations in clinical settings. While wireless actuation offers advantages in medical applications, the challenge of providing sufficient force to magnetic needles for tissue penetration remains a barrier to practical application.

View Article and Find Full Text PDF

Opening the blood brain barrier (BBB) under imaging guidance may be useful for the treatment of many brain disorders. Rapidly applied magnetic fields have the potential to generate electric fields in brain tissue that, if properly timed, may enable safe and effective BBB opening. By tuning magnetic pulses generated by a novel electropermanent magnet (EPM) array, we demonstrate the opening of tight junctions in a BBB model culture in vitro, and show that induced monophasic electrical pulses are more effective than biphasic ones.

View Article and Find Full Text PDF

Background: Rotational manipulation of chains or clusters of magnetic nanoparticles (MNPs) offers a means for directed translation and payload delivery that should be explored for clinical use. Multiple MNP types are available, yet few studies have performed side-by-side comparisons to evaluate characteristics such as velocity, movement at a distance, and capacity for drug conveyance or dispersion.

Purpose: Our goal was to design, build, and study an electric device allowing simultaneous, multichannel testing (e.

View Article and Find Full Text PDF

Small soft robotic systems are being explored for myriad applications in medicine. Specifically, magnetically actuated microrobots capable of remote manipulation hold significant potential for the targeted delivery of therapeutics and biologicals. Much of previous efforts on microrobotics have been dedicated to locomotion in aqueous environments and hard surfaces.

View Article and Find Full Text PDF

This paper demonstrates the feasibility of ligation and tissue penetration for surgical suturing tasks using magnetically actuated suture needles. Manipulation of suture needles in minimally invasive surgery involves using articulated manual/robotic tools for needle steering and controlling needle-tissue or thread-tissue interactions. The large footprints of conventional articulated surgical tools significantly increase surgical invasiveness, potentially leading to longer recovery times, tissue damage, scarring, or associated infections.

View Article and Find Full Text PDF

This paper proposes a magnetic needle steering controller to manipulate mesoscale magnetic suture needles for executing planned suturing motion. This is an initial step towards our research objective: enabling autonomous control of magnetic suture needles for suturing tasks in minimally invasive surgery. To demonstrate the feasibility of accurate motion control, we employ a cardinally-arranged four-coil electromagnetic system setup and control magnetic suture needles in a 2-dimensional environment, i.

View Article and Find Full Text PDF

Goal: To develop a micron-scale device that can operate as an MRI-based reporter for the presence of SARS-CoV-2 virus.

Methods: Iron rod microdevices were constructed via template-guided synthesis and suspended in phosphate buffered saline (PBS). Heat-inactivated SARS-CoV-2 viruses were added to the samples and imaged with low-field MRI.

View Article and Find Full Text PDF

In this work, a dynamically tunable B field is used to perform variable-field NMR. The system consists of an array of electropermanent AlNiCo-5 magnets whose magnetizations are individually programmed using pulse-power control. This design allows the field strength to be varied for field-dispersion measurements.

View Article and Find Full Text PDF

Soft, untethered microrobots composed of biocompatible materials for completing micromanipulation and drug delivery tasks in lab-on-a-chip and medical scenarios are currently being developed. Alginate holds significant potential in medical microrobotics due to its biocompatibility, biodegradability, and drug encapsulation capabilities. Here, we describe the synthesis of MANiACs-Magnetically Aligned Nanorods in Alginate Capsules-for use as untethered microrobotic surface tumblers, demonstrating magnetically guided lateral tumbling via rotating magnetic fields.

View Article and Find Full Text PDF

Applying magnetic fields to guide and retain drug-loaded magnetic particles has been proposed as a way of treating illnesses. Largely, these efforts have been targeted at tumors. One significant barrier to long range transport within tumors is the extracellular matrix (ECM).

View Article and Find Full Text PDF

The principle of magnetic drug targeting, wherein therapy is attached to magnetically responsive carriers and magnetic fields are used to direct that therapy to disease locations, has been around for nearly two decades. Yet our ability to safely and effectively direct therapy to where it needs to go, for instance to deep tissue targets, remains limited. To date, magnetic targeting methods have not yet passed regulatory approval or reached clinical use.

View Article and Find Full Text PDF

Purpose: A time-varying magnetic field can cause unpleasant peripheral nerve stimulation (PNS) when the maximum excursion of the magnetic field (ΔB) is above a frequency-dependent threshold level [P. Mansfield and P. R.

View Article and Find Full Text PDF

High resolution positron emission mammography (PEM) can address the current clinical needs of breast cancer patients and the requirements for future translational work. Combining the quantitative capabilities of positron emission tomography (PET) with millimeter resolution, PEM can image the earliest in situ forms of breast cancer as well as putative cancer precursor lesions (e.g.

View Article and Find Full Text PDF

We sought to prospectively assess the diagnostic performance of a high-resolution positron emission tomography (PET) scanner using mild breast compression (positron emission mammography [PEM]). Data were collected on concomitant medical conditions to assess potential confounding factors. At four centers, 94 consecutive women with known breast cancer or suspicious breast lesions received 18F-fluorodeoxyglucose (FDG) intravenously, followed by PEM scans.

View Article and Find Full Text PDF

Background: High-resolution positron-emission mammography (PEM) is a new device, which allows the imaging of breast tissue. A prospective study was performed to assess the accuracy of PEM in newly diagnosed breast cancer patients.

Methods: In a prospective multicenter study, 44 women with confirmed breast cancers were imaged with a high-resolution PEM scanner (Naviscan PET Systems, Rockville, MD) with 18F-fluorodeoxyglucose.

View Article and Find Full Text PDF

Positron emission mammography (PEM) provides images of biochemical activity in the breast with spatial resolution matching individual ducts (1.5 mm full-width at half-maximum). This spatial resolution, supported by count efficiency that results in high signal-to-noise ratio, allows confident visualization of intraductal as well as invasive breast cancers.

View Article and Find Full Text PDF

The purpose of the study was to demonstrate the feasibility of a hybrid functional/anatomic breast imaging platform with biopsy capability for facilitating lesion detection and diagnosis. This platform consists of an investigative dedicated positron emission mammography (PEM) device mounted on a stereotactic X-ray mammography system, permitting sequential acquisition of mammographic and emission images during a single breast compression. There is automatic coregistration of images from both modalities, and these results can be successfully correlated with histopathologic findings.

View Article and Find Full Text PDF

Background: Evaluation of high-risk mammograms represents an enormous clinical challenge. Functional breast imaging coupled with mammography (positron emission mammography [PEM]) could improve imaging of such lesions. A prospective study was performed using PEM in women scheduled for stereotactic breast biopsy.

View Article and Find Full Text PDF