Odors due to the emission of hydrogen sulfide (HS) have been a concern in the sewage treatment plants over the last decades. HS fate and emissions from extended aeration activated sludge (EAAS) system in Muharram Aisha-sewage treatment plant (MA-STP) were studied using TOXCHEM model. Sensitivity analysis at different aeration flowrate, HS loading rate, wastewater pH, wastewater temperature and wind speed were studied.
View Article and Find Full Text PDFRecycled paper mill effluent (RPME) consists of various organic and inorganic compounds. In this study, modified anaerobic hybrid baffled (MAHB) bioreactor has been successfully used to anaerobically digest RPME. The anaerobic digestion was investigated in relation to methane production rate, lignin removal, and chemical oxygen demand (COD) removal, with respect to organic loading rate (OLR) and hydraulic retention time (HRT).
View Article and Find Full Text PDFMicrobial content formed in bioreactors plays a significant role in the anaerobic process. Therefore, the physicochemical characteristics of microbial content in a modified anaerobic inclining-baffled reactor (MAI-BR) treating recycled paper mill effluent (RPME) were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG), and derivative thermogravimetric (DTG) analyses, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET), and surface area analyzer. FTIR spectra revealed that the microbial content had stronger characteristic peaks corresponding to alcohols, water, lipids carbohydrates, proteins, and mineral compounds.
View Article and Find Full Text PDFThe performance of modified anaerobic inclining-baffled reactor (MAI-BR) treating recycled paper mill effluent (RPME) was investigated by varying the influent chemical oxygen demand (COD) concentration from 1000 to 4000 mg/L, and the hydraulic retention time (HRT) from 3 to 1 day, corresponding to an organic loading rate increase from 0.33 to 4 g COD/L day. Throughout 126 days of operation, a maximum removal efficiency of up to 96% of chemical oxygen demand (COD) and 99% of biological oxygen demand, methane (CH) yield of 0.
View Article and Find Full Text PDFRecycled paper mill effluent (RPME) contains high levels of organic and solid compounds, causing operational problems for anaerobic biological treatment. In this study, a unique modified anaerobic inclining-baffled reactor (MAI-BR) has been developed to treat RPME at various initial chemical oxygen demand (COD) concentrations (1000-4000 mg/L) and hydraulic retention times (HRTs) (3 and 1 day). The COD removal efficiency was decreased from 96 to 83% when the organic loading rate (OLR) was increased from 0.
View Article and Find Full Text PDFIn this study, the kinetic parameters of rice husk ash (RHA)/CaO/CeO(2) sorbent for SO(2) and NO sorptions were investigated in a laboratory-scale stainless steel fixed-bed reactor. Data experiments were obtained from our previous results and additional independent experiments were carried out at different conditions. The initial sorption rate constant (k(0)) and deactivation rate constant (k(d)) for SO(2)/NO sorptions were obtained from the nonlinear regression analysis of the experimental breakthrough data using deactivation kinetic model.
View Article and Find Full Text PDFIn this work, the application of response surface and neural network models in predicting and optimizing the preparation variables of RHA/CaO/CeO(2) sorbent towards SO(2)/NO sorption capacity was investigated. The sorbents were prepared according to central composite design (CCD) with four independent variables (i.e.
View Article and Find Full Text PDFIn this work, the removal of SO(2) and NO from simulated flue gas from combustion process was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO-based sorbent. Various metal precursors were used in order to select the best metal impregnated over RHA/CaO sorbents. The results showed that RHA/CaO sorbents impregnated with CeO(2) had the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NO.
View Article and Find Full Text PDFThis paper examines the effectiveness of 10 additives toward improving SO2 sorption capacities (SSC) of rice husk ash (RHA)/lime (CaO) sorbent. The additives examined are NaOH, CaCl2, LiCl, NaHCO3, NaBr, BaCl2, KOH, K2HPO4, FeCl3 and MgCl2. Most of the additives tested increased the SSC of RHA/CaO sorbent, whereby NaOH gave highest SSC (30mg SO2/g sorbent) at optimum concentration (0.
View Article and Find Full Text PDFThe SO2 sorption capacity (SSC) of sorbents prepared from rice husk ash (RHA) with NaOH as additive was studied in a fixed-bed reactor. The sorbents were prepared using a water hydration method by slurrying RHA, CaO, and NaOH. Response surface methodology (RSM) based on four-variable central composite face centered design (CCFCD) was employed in the synthesis of the sorbents.
View Article and Find Full Text PDFSiliceous materials such as rice husk ash (RHA) have potential to be utilized as high performance sorbents for the flue gas desulfurization process in small-scale industrial boilers. This study presents findings on identifying the key factorfor high desulfurization activity in sorbents prepared from RHA. Initially, a systematic approach using central composite rotatable design was used to develop a mathematical model that correlates the sorbent preparation variables to the desulfurization activity of the sorbent.
View Article and Find Full Text PDF