Proteins can be empowered via SpyTag for anchoring and nanoassembly, through covalent bonding to SpyCatcher partners. Here we generate a switchable version of SpyCatcher, allowing gentle purification of SpyTagged proteins. We introduce numerous histidines adjacent to SpyTag's binding site, giving moderate pH-dependent release.
View Article and Find Full Text PDFCovalently linking together different proteins can enhance functionality for a range of applications. We have developed the SnoopLigase peptide-peptide conjugation method to easily and specifically link proteins fused to the peptides SnoopTagJr or DogTag via an isopeptide bond. SnoopLigase conjugation has been applied for enhancing enzyme resilience and for antigen oligomerization to enhance vaccine efficacy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2019
Much of life's complexity depends upon contacts between proteins with precise affinity and specificity. The successful application of engineered proteins often depends on high-stability binding to their target. In recent years, various approaches have enabled proteins to form irreversible covalent interactions with protein targets.
View Article and Find Full Text PDFPeptide tags are a key resource, introducing minimal change while enabling a consistent process to purify diverse proteins. However, peptide tags often provide minimal benefit post-purification. We previously designed SpyTag, forming an irreversible bond with its protein partner SpyCatcher.
View Article and Find Full Text PDFSpyTag is a peptide that forms a spontaneous amide bond with its protein partner SpyCatcher. This protein superglue is a broadly useful tool for molecular assembly, locking together biological building blocks efficiently and irreversibly in diverse architectures. We initially developed SpyTag and SpyCatcher by rational design, through splitting a domain from a Gram-positive bacterial adhesin.
View Article and Find Full Text PDF