Publications by authors named "Irmgard D Dietzel"

Growth cones of oligodendrocyte progenitor cells (OPCs) are challenging to investigate with conventional light microscopy due to their small size. Especially substructures such as filopodia, lamellipodia and their underlying cytoskeleton are difficult to resolve with diffraction limited microscopy. Light microscopy techniques, which surpass the diffraction limit such as stimulated emission depletion microscopy, often require expensive setups and specially trained personnel rendering them inaccessible to smaller research groups.

View Article and Find Full Text PDF

Mice lacking functional thyroid follicular cells, mice, die early postnatally, making them suitable models for extreme hypothyroidism. We have previously obtained evidence in postnatal rat neurons, that a down-regulation of Na-current density could explain the reduced excitability of the nervous system in hypothyroidism. If such a mechanism underlies the development of coma and death in severe hypothyroidism, mice should show deficits in the expression of Na currents and potentially also in the expression of Na/K-ATPases, which are necessary to maintain low intracellular Na levels.

View Article and Find Full Text PDF

Cell culture studies offer the unique possibility to investigate the influence of pharmacological treatments with quantified dosages applied for defined time durations on survival, morphological maturation, protein expression and function as well as the mutual interaction of various cell types. Cultures obtained from postnatal rat brain contain a substantial number of glial cells that further proliferate with time in culture leading to an overgrowth of neurons with glia, especially astrocytes and microglia. A well-established method to decrease glial proliferation in vitro is to apply low concentrations of cytosine arabinoside (AraC).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease associated with loss or dysfunction of dopaminergic neurons located in the substantia nigra (SN), and there is no cure available. An emerging new approach for treatment is to transplant human induced dopaminergic neurons directly into the denervated striatal brain target region. Unfortunately, neurons grafted into the substantia nigra are unable to grow axons into the striatum and thus do not allow recovery of the original connectivity.

View Article and Find Full Text PDF

The sodium potassium ATPase (Na/K ATPase) is essential for the maintenance of a low intracellular Na and a high intracellular K concentration. Loss of function of the Na/K ATPase due to mutations in Na/K ATPase genes, anoxic conditions, depletion of ATP or inhibition of the Na/K ATPase function using cardiac glycosides such as digitalis, causes a depolarization of the resting membrane potential. While in non-excitable cells, the uptake of glucose and amino acids is decreased if the function of the Na/K ATPase is compromised, in excitable cells the symptoms range from local hyper-excitability to inactivating depolarization.

View Article and Find Full Text PDF

Effects of glial cells on electrical isolation and shaping of synaptic transmission between neurons have been extensively studied. Here we present evidence that the release of proteins from astrocytes as well as microglia may regulate voltage-activated Na(+) currents in neurons, thereby increasing excitability and speed of transmission in neurons kept at distance from each other by specialized glial cells. As a first example, we show that basic fibroblast growth factor and neurotrophin-3, which are released from astrocytes by exposure to thyroid hormone, influence each other to enhance Na(+) current density in cultured hippocampal neurons.

View Article and Find Full Text PDF

Bias-free, three-dimensional imaging of entire living cellular specimen is required for investigating shape and volume changes that occur during cellular growth or migration. Here we present fifty consecutive recordings of a living cultured neuron from a mouse dorsal root ganglion obtained by Scanning ion conductance microscopy (SICM). We observed a saltatory migration of the neuron with a mean velocity of approximately 20 μm/h.

View Article and Find Full Text PDF

Scanning ion conductance microscopy (SICM) is a scanning probe technique that allows investigating surfaces of complex, convoluted samples such as living cells with minimal impairment. This technique monitors the ionic current through the small opening of an electrolyte-filled micro- or nanopipet that is approached toward a sample, submerged in an electrolyte. The conductance drops in a strongly distance-dependent manner.

View Article and Find Full Text PDF

The aim of the present study has been to obtain high yields of oligodendrocyte precursor cells (OPCs) in culture. This is a first step in facilitation of myelin repair. We show that, in addition to factors, known to promote proliferation, such as basic fibroblast growth factor (FGF-2) and platelet derived growth factor (PDGF) the choice of the basal medium exerts a significant influence on the yield of OPCs in cultures from newborn rats.

View Article and Find Full Text PDF

The migration of oligodendrocyte progenitor cells (OPCs) to the white matter is an indispensable requirement for an intact brain function. The mechanism of cell migration in general is not yet completely understood. Nevertheless, evidence is accumulating that besides the coordinated rearrangement of the cytoskeleton, a finetuned interplay of ion and water fluxes across the cell membrane is essential for cell migration.

View Article and Find Full Text PDF

Scanning ion conductance microscopy (SICM) is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate the topography of delicate samples such as living cells. SICM has shown its potential in various applications such as high resolution and long-time imaging of living cells or the determination of local changes in cellular volume.

View Article and Find Full Text PDF

Background: Sulfated glycosaminoglycan chains are known for their regulatory functions during neural development and regeneration. However, it is still unknown whether the sulfate residues alone influence, for example, neural precursor cell behavior or whether they act in concert with the sugar backbone. Here, we provide evidence that the unique 473HD-epitope, a representative chondroitin sulfate, is expressed by spinal cord neural precursor cells in vivo and in vitro, suggesting a potential function of sulfated glycosaminoglycans for spinal cord development.

View Article and Find Full Text PDF

Background: Cell volume determination plays a pivotal role in the investigation of the biophysical mechanisms underlying various cellular processes. Whereas light microscopy in principle enables one to obtain three dimensional data, the reconstruction of cell volume from z-stacks is a time consuming procedure. Thus, three dimensional topographic representations of cells are easier to obtain by scanning probe microscopical measurements.

View Article and Find Full Text PDF

Scanning ion conductance microscopy (SICM) is a suitable tool for imaging surfaces of living cells in a contact-free manner. We have shown previously that SICM in backstep mode allows one to trace the outlines of entire cell somata and to detect changes in cellular shape and volume. Here we report that SICM can be employed to quantitatively observe cellular structures such as cell processes of living cells as well as cell somata of motile cells in the range of hours.

View Article and Find Full Text PDF

Calcium phosphate-based transfection methods are frequently used to transfer DNA into living cells. However, it has so far not been studied in detail to what extend the different transfection methods lead to a net calcium uptake. Upon subsequent resolution of the calcium phosphate, intracellular free ionic calcium-surges could result, inducing as side effect various physiological responses that may finally result in cell death.

View Article and Find Full Text PDF

We have previously shown that treatment with the thyroid hormone T(3) increases the voltage-gated Na(+)current density (Nav-D) in hippocampal neurons from postnatal rats, leading to accelerated action potential upstrokes and increased firing frequencies. Here we show that the Na(+) current regulation depends on the presence of glial cells, which secrete a heat-instable soluble factor upon stimulation with T(3). The effect of conditioned medium from T(3)-treated glial cells was mimicked by basic fibroblast growth factor (bFGF), known to be released from cerebellar glial cells after T(3) treatment.

View Article and Find Full Text PDF

Background: Periventricular leukomalacia (PVL) is a frequent complication of preterm delivery. Proinflammatory cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha) released from astrocytes and microglia activated by infection or ischemia have previously been shown to impair survival and maturation of oligodendrocyte progenitors and could thus be considered as potential factors contributing to the generation of this disease. The first goal of the present study was to investigate whether exposure of oligodendrocyte precursors to these cytokines arrests the maturation of ion currents in parallel to its effects on myelin proteins and morphological maturation.

View Article and Find Full Text PDF

The poor differentiation and survival of dopaminergic neurones are practical constraints in their therapeutic applications. Here we explored the role of neuronally activated Ras in ventral mesencephalon-derived neurospheres generated from synRas mouse embryos. The expression of Val12 Ha-Ras transgene and enhanced Ras activity was evident after differentiation of the neurospheres with a corresponding activating phosphorylation of mitogen-activated protein kinase.

View Article and Find Full Text PDF

Constant-distance mode scanning potentiometry was established by integrating potentiometric microsensors as ion-selective scanning probes into a SECM setup that was equipped with a piezoelectric shear force-based tip-to-sample distance control. The combination of specially designed micrometer-sized potentiometric tips with an advanced system for tip positioning allowed simultaneous acquisition of both topographic and potentiometric information at solid/liquid interfaces with high spatial resolution. The performance of the approach was evaluated by applying Ca(2+)-selective constant-distance mode potentiometry to monitor the dissolution of calcium carbonate occurring either at the (104) surface of calcite crystals or in proximity to the more complex surface of cross sections of a calcium carbonate shell of Mya arenaria exposed to slightly acidic aqueous solutions.

View Article and Find Full Text PDF

Objective: There is strong evidence from recent clinical studies that ascending intrauterine infection is associated with an increased incidence of periventricular leukomalacia in very premature fetuses. Periventricular leukomalacia is characterized by disrupted myelination from a loss of oligodendrocyte progenitors. We investigated the effects of proinflammatory cytokines on the survival and differentiation of this cell type.

View Article and Find Full Text PDF