ACS Appl Mater Interfaces
August 2017
Electrically tunable microcavities are essential elements for tunable laser sources indispensable for modern telecommunication and spectroscopy. However, most device concepts suffer from extensive lithography or etching for membrane processing. Here, we present an electrically and continuously tunable, multi-half-wavelength microcavity with a quality factor > 1000 as an easy-to-fabricate platform with potential use for vertical-cavity surface-emitting lasers.
View Article and Find Full Text PDFReliable and efficient identification of DNA is a major goal in on-site diagnostics. One dimensional nanostructures like nanowires (NW) represent potential sensor structures due to their extreme surface-to-bulk ratio, enabling enhanced biomolecule binding which results in optimal signals. While silicon NW are already well studied, NW made from other materials with promising properties like ZnO are not yet established as NW sensor material for bioanalytics.
View Article and Find Full Text PDFWe report on the biofunctionalization of zinc oxide nanowires for the attachment of DNA target molecules on the nanowire surface. With the organosilane glycidyloxypropyltrimethoxysilane acting as a bifunctional linker, amino-modified capture molecule oligonucleotides have been immobilized on the nanowire surface. The dye-marked DNA molecules were detected via fluorescence microscopy, and our results reveal a successful attachment of DNA capture molecules onto the nanowire surface.
View Article and Find Full Text PDF