The state-dependent noradrenergic activation of hypoglossal motoneurons plays an important role in the maintenance of upper airway patency and pathophysiology of obstructive sleep apnea (OSA). Chronic intermittent hypoxia (CIH), a major pathogenic factor of OSA, contributes to the risk for developing neurodegenerative disorders in OSA patients. Using anterograde tracer, channelrhodopsin-2, we mapped axonal projections from noradrenergic A7 and SubCoeruleus neurons to hypoglossal nucleus in DBH-cre mice and assessed the effect of CIH on these projections.
View Article and Find Full Text PDFJ Appl Physiol (1985)
July 2022
The activity of hypoglossal motoneurons plays an important role in the maintenance of upper airway patency. Both withdrawal of noradrenergic excitatory drive and increase of cholinergic inhibition markedly decrease excitability of hypoglossal motoneurons during sleep and especially during rapid-eye-movement (REM) stage. This leads to increased collapsibility of upper airway during sleep, which is the major neurological factor of obstructive sleep apnea (OSA) pathophysiology.
View Article and Find Full Text PDFFront Neurol
September 2018
Obstructive Sleep Apnea (OSA) is a common sleep-related respiratory disorder that is associated with cognitive, cardiovascular, and metabolic morbidities. The major cause of OSA is the sleep-related reduction of upper airway muscle tone that leads to airway obstructions in individuals with anatomically narrow upper airway. This reduction is mainly due to the suppressant effect of sleep on hypoglossal motoneurons that innervate upper airway muscles.
View Article and Find Full Text PDFIn patients with obstructive sleep apnea (OSA), the pharyngeal muscles become relaxed during sleep, which leads to a partial or complete closure of upper airway. Experimental studies suggest that withdrawal of noradrenergic and serotonergic drives importantly contributes to depression of hypoglossal motoneurons and, therefore, may contribute to OSA pathophysiology; however, specific cellular and synaptic mechanisms remain unknown. In this new study, we developed a biophysical network model to test the hypothesis that, to explain experimental observations, the neuronal network for monoaminergic control of excitability of hypoglossal motoneurons needs to include excitatory and inhibitory perihypoglossal interneurons that mediate noradrenergic and serotonergic drives to hypoglossal motoneurons.
View Article and Find Full Text PDFNeural mechanisms of obstructive sleep apnea, a common sleep-related breathing disorder, are incompletely understood. Hypoglossal motoneurons, which provide tonic and inspiratory activation of genioglossus (GG) muscle (a major upper airway dilator), receive catecholaminergic input from medullary A1/C1 neurons. We aimed to determine the contribution of A1/C1 neurons in control of GG muscle during sleep and wakefulness.
View Article and Find Full Text PDFThe Kölliker-Fuse nucleus (KF) is known primarily for its respiratory function as the "pneumotaxic center" or "pontine respiratory group." Considered part of the parabrachial (PB) complex, KF contains glutamatergic neurons that project to respiratory-related targets in the medulla and spinal cord (Yokota, Oka, Tsumori, Nakamura, & Yasui, 2007). Here we describe an unexpected population of neurons in the caudal KF and adjacent lateral crescent subnucleus (PBlc), which are γ-aminobutyric acid (GABA)ergic and have an entirely different pattern of projections than glutamatergic KF neurons.
View Article and Find Full Text PDFObstructive sleep apnea (OSA) patients have increased upper airway muscle activity, including such lingual muscles as the genioglossus (GG), geniohyoid (GH), and hyoglossus (HG). This adaptation partially protects their upper airway against obstructions. Rodents are used to study the central neural control of sleep and breathing but they do not naturally exhibit OSA.
View Article and Find Full Text PDFRespir Physiol Neurobiol
September 2013
In obstructive sleep apnea (OSA) patients, inspiratory activation (IA) of lingual muscles protects the upper airway from collapse. We aimed to determine when rats' lingual muscles exhibit IA. In 5 Sprague-Dawley and 3 Wistar rats, we monitored cortical EEG and lingual, diaphragmatic and nuchal electromyograms (EMGs), and identified segments of records when lingual EMG exhibited IA.
View Article and Find Full Text PDFRodents subjected to chronic intermittent hypoxia (CIH) are used to investigate the mechanisms underlying the consequences of the obstructive sleep apnea (OSA) syndrome. Following CIH, rats have an increased density of noradrenergic terminals in the hypoglossal motor nucleus which innervates lingual muscles that protect the upper airway from collapse in OSA patients. Here, we investigated whether such an increase also occurs in other brainstem nuclei.
View Article and Find Full Text PDFRationale: Patients with obstructive sleep apnea (OSA) adapt to the anatomical vulnerability of their upper airway by generating increased activity in upper airway-dilating muscles during wakefulness. Norepinephrine (NE) and serotonin (5-HT) mediate, through α₁-adrenergic and 5-HT₂A receptors, a wake-related excitatory drive to upper airway motoneurons. In patients with OSA, this drive is necessary to maintain their upper airway open.
View Article and Find Full Text PDFThe perifornical (PF) region of the posterior hypothalamus plays an important role in the regulation of sleep-wake states and motor activity. Disinhibition of PF neurons by the GABA(A) receptor antagonist, bicuculline, has been used to study the mechanisms of wake- and motor activity-promoting effects that emanate from the PF region. Bicuculline activates PF neurons, including the orexin-containing cells that have major excitatory projections to brainstem noradrenergic and serotonergic neurons.
View Article and Find Full Text PDFJ Appl Physiol (1985)
November 2008
The inspiratory drive to hypoglossal (XII) motoneurons originates in the caudal medullary intermediate reticular (IRt) region. This drive is mainly glutamatergic, but little is known about the neurochemical features of IRt XII premotor neurons. Prompted by the evidence that XII motoneuronal activity is controlled by both muscarinic (M) and nicotinic cholinergic inputs and that the IRt region contains cells that express choline acetyltransferase (ChAT), a marker of cholinergic neurons, we investigated whether some IRt XII premotor neurons are cholinergic.
View Article and Find Full Text PDFStudies in behaving animals suggest that neurones located in the perifornical (PF) region of the posterior hypothalamus promote wakefulness and suppress sleep. Among such cells are those that synthesize the excitatory peptides, orexins (ORX). Lack of ORX, or their receptors, is associated with narcolepsy/cataplexy, a disorder characterized by an increased pressure for rapid eye movement (REM) sleep.
View Article and Find Full Text PDFMesopontine cholinergic (ACh) neurons have increased discharge during wakefulness, rapid eye movement (REM) sleep, or both. Hypoglossal (12) motoneurons, which play an important role in the control of upper airway patency, are postsynaptically excited by stimulation of nicotinic receptors, whereas muscarinic receptors presynaptically inhibit inputs to 12 motoneurons. These data suggest that ACh contributes to sleep/wake-related changes in the activity of 12 motoneurons by acting within the hypoglossal motor nucleus (Mo12), but the origins of ACh projections to Mo12 are not well established.
View Article and Find Full Text PDFIn individuals with a narrow or collapsible upper airway, sleep-related hypotonia of upper airway muscles leads to recurrent airway obstructions. Brainstem noradrenergic neurons reduce their activity during slow-wave sleep and become silent during rapid eye movement sleep; this may cause state-dependent changes in the motor output and reflexes. The loss of noradrenergic excitation is a major cause of sleep-related depression of activity in upper airway muscles innervated by the hypoglossal nerve.
View Article and Find Full Text PDF