Cell fusion into multinucleated giant cells (MGC) is an essential process that contributes to many important biological mechanisms in mammalians. In the bone and immune system, macrophages are endowed with a remarkable potential for cell fusion events as evidenced by their propensity to fuse with other cells and between themselves during both normal processes and disease. Macrophage fusion is critical for the normal development of multinucleated osteoclasts, the cells responsible for bone resorption.
View Article and Find Full Text PDFThe P2X(7) receptor (P2X(7)R), an ATP-gated ion channel, has been implicated in the process of cell-to-cell fusion into multinucleated macrophages (MA), but its contribution to MA fusion driven by physiological/pathological stimuli is not clearly established. Based on several lines of evidence, we demonstrate that P2X(7)R is critical for the induction of multinucleated MA by the inflammatory cytokine GM-CSF: 1) pharmacological inhibition of P2X(7)R with oxidized ATP (oATP), KN-62, and the selective antagonist A740003 abrogated GM-CSF action on rat alveolar MA and murine peritoneal MA; 2) a murine J774 P2X(7) low MA clone, selected for defective P2X(7)R function, was unresponsive; 3) MA from mice lacking P2X(7)R failed to respond to GM-CSF, in contrast to wild-type. GM-CSF also stimulated ATP-induced membrane permeabilization in J774 P2X(7) high MA and rat alveolar MA, an effect absent in the P2X(7) low MA clone and inhibited by the P2X(7) blockers oATP and KN-62.
View Article and Find Full Text PDFDefects in bone homeostasis are a major health problem. Osteoclast differentiation and activation have a crucial role in bone remodeling in health and disease. Osteoclasts are bone-resorbing cells derived from mononuclear phagocyte progenitors.
View Article and Find Full Text PDFMultinucleated giant cells (MGC), a hallmark of chronic inflammatory reactions, remain an enigma of cell biology. There is evidence implicating the purinergic P2X7 receptor in the fusion process leading to MGC. To investigate this, we used HEK 293 cells stably transfected with either 1) the full-length rat P2X7 receptor (P2X7 cells), 2) a rat P2X7 receptor lacking the C-terminal domain (P2X7TC), or 3) a mock vector, and rat alveolar macrophages (MA) expressing the native receptor.
View Article and Find Full Text PDFTwo histone H4 mRNA variants, H4-v.1 and histogranin mRNAs, were detected in the rat genome and measured in various tissues and isolated alveolar macrophages. Medium to high levels of both mRNAs were present in the liver, adrenal glands, thymus, bone marrow and alveolar macrophages.
View Article and Find Full Text PDFWe studied the expression of the osteogenic and antinociceptive C-terminal histone H4-related peptide fragments, H4-(89-102) (OGP) and H4-(86-100), respectively, within various rat tissues and isolated alveolar macrophages (AM) by radioimmunoassay (RIA). OGP was located mainly within the bone marrow, spleen, thymus, and lungs whereas H4-(86-100) was more concentrated within the bone marrow, lymph nodes, spinal cord, pituitaries and thymus. The expression pattern of the two peptides showed similarities with the tissue expression pattern of the histone H4 mRNA variant H4-v.
View Article and Find Full Text PDFHistogranin (HN)-like nonpeptides were designed and synthesized using benzimidazole (compound 1) and o-phenylenediamine (compounds 2-7) as scaffolds for the attachment of phenolic hydroxyl and basic guanidino pharmacophoric elements present in HN. The benzimidazole derivative N-5-guanidinopentanamide-(2R)-yl-2-(p-hydroxybenzyl)-5-carboxybenzimidazole (1) and the o-phenylenediamine derivative N-5-guanidinopentanamide-(2S)-yl-2-N-(p-hydroxyphenylacetyl) phenylenediamine (2) were more potent analgesics than HN in both the mouse writhing (5.5 and 3.
View Article and Find Full Text PDFNovel analogues of the minimal antinociceptive histogranin (HN) fragment Gly(7)-Gln-Gly-Arg(10), in which amino acids in positions 8, 9, and 10 were replaced by lipophilic amino acids and corresponding d-amino acid residues in combination with N- to C-terminal cyclization, were synthesized and tested in various animal models of pain. All synthetic compounds were potent and efficacious analgesics in the mouse writhing test. Cyclic [-Gly-Ala-Tyr-d-Arg-] (9) and cyclic [-Gly p-Cl-Phe-Tyr-d-Arg-] (10) were the most potent analgesics, being 17 and 135 times as potent as HN, respectively (AD(50) of 1.
View Article and Find Full Text PDF