Publications by authors named "Irma G Gonzalez-Herrera"

A novel water-soluble derivative of curcumin (Cur-[G-2]-OH) was designed and synthesized from accessible raw materials in only two steps with an overall yield of 80%. The modification of curcumin phenol groups with second-generation polyester dendrons (dendronization) as a strategy to achieve an optimal hydrophilic/hydrophobic balance allows the complete water solubilization of the new curcumin derivative (5mg/ml) at room temperature. The therapeutic potential of Cur-[G-2]-OH was investigated in terms of antioxidant capacity, intracellular uptake and cytotoxicity in both rat glioblastoma cells and normal human dermal fibroblasts.

View Article and Find Full Text PDF

It was explored the cytoprotective and antioxidant effect of MLN4924, a specific inhibitor of Nedd8-activating enzyme (NAE), against hydrogen peroxide (H2O2)-induced damage in cerebellar granule neurons (CGNs). Primary cultures of CGNs were exposed to H2O2 after preincubation with MLN4924. The compounds were removed, and CGNs were incubated in culture medium for 24h in order to determine cell viability by 3-[4,5-dimethylthiazol-2-yl)]-2,5-diphenyl-tetrazolium bromide (MTT) and fluorescein diacetate (FDA) assays.

View Article and Find Full Text PDF

Recent evidence suggests that the malfunctioning disposal system of cell protein called ubiquitin-proteasome system (UPS) plays an important role in the development of disorders, including cancer and neurodegenerative diseases. Accumulating evidence suggests that the abnormal regulation of the E3 ubiquitin ligases, essential components of the UPS, contributes to uncontrolled proliferation, genomic instability and cancer, since these ligases and their substrates are involved in the regulation of cell cycle progression, gene transcription, signal transduction, DNA replication and others. Through selective degradation of specific substrates, E3 ligases regulate different biological processes.

View Article and Find Full Text PDF

Neurological diseases comprise a group of heterogeneous disorders characterized by progressive brain dysfunction and cell death. In the next years, these diseases are expected to constitute a world-wide health problem. Because excitotoxicity and oxidative stress are involved in neurodegenerative diseases, it becomes relevant to describe pharmacological therapies designed to activate endogenous cytoprotective systems.

View Article and Find Full Text PDF

The neuroactive metabolite at the kynunerine pathway, kynurenic acid (KYNA), is a well-known competitive antagonist at the co-agonist glycine site of the N-methyl-D-aspartate receptor (NMDAr), and also decreases the extracellular levels of glutamate by blocking α7-nicotinic acetylcholine receptor (α7-nAchr) located on glutamatergic terminals. KYNA has been often reported to be neuroprotective in different neurotoxic models. The systemic administration of L-kynurenine (L-KYN)--the precursor of KYNA--together with probenecid (PROB)--an inhibitor of organic acids transport--to rodents increases KYNA levels in the brain in a dose-dependent manner.

View Article and Find Full Text PDF

Tert-butylhydroquinone (tBHQ) is a xenobiotic with reported antioxidant properties. tBHQ has been shown to induce nuclear translocation of the transcription factor NF-E2-related factor 2 (Nrf2) to further activate the antioxidant response element (ARE). In turn, the Nrf2/ARE pathway is responsible for the induction of phase 2 antioxidant enzymes that detoxify oxidant promoters from different toxic insults.

View Article and Find Full Text PDF

Fibroblast growth factor-2 (FGF-2) plays a fundamental role in brain functions. This role may be partly achieved through the control of its expression at the translational level via an internal ribosome entry site (IRES)-dependent mechanism. Transgenic mice expressing a bicistronic mRNA allowed us to study in vivo and ex vivo where this translational mechanism operates.

View Article and Find Full Text PDF

Spermatogenesis is a complex process involving cell proliferation, differentiation, and apoptosis. Fibroblast growth factor 2 (FGF-2) is involved in testicular function, but its role in spermatogenesis has not been fully documented. The control of FGF-2 expression particularly occurs at the translational level, by an internal ribosome entry site (IRES)-dependent mechanism driving the use of alternative initiation codons.

View Article and Find Full Text PDF

Fibroblast growth factor 2 (FGF-2) is normally synthesized at low levels but is elevated in various pathophysiological conditions including diabetes-associated vascular diseases. FGF-2 expression is regulated translationally through an internal ribosome entry site (IRES) located in its mRNA, which allows a nonclassical cap-independent translation. We addressed the pathophysiological regulation of the IRES in vivo by using a streptozotocin-induced hyperglycemic model known to suppress markedly overall translation.

View Article and Find Full Text PDF