Nonlinear holography shapes the amplitude and phase of generated new harmonics using nonlinear processes. Classical nonlinear holography influenced many fields in optics, from information storage, demultiplexing of spatial information, and all-optical control of accelerating beams. Here, we extend the concept of nonlinear holography to the quantum regime.
View Article and Find Full Text PDFOptical N00N states are N-photon path entangled states with important applications in quantum metrology. However, their use was limited till now owing to the difficulties of generating them in an efficient and robust manner. Here we propose and experimentally demonstrate two new simple, compact and robust schemes to generate path entangled N00N states with N = 2 that emerge directly from the nonlinear interaction.
View Article and Find Full Text PDFPhys Rev Lett
February 2014
The effect of edge topological dislocations on the phase matching spectrum of quadratic nonlinear photonic crystals was studied theoretically and experimentally. We have found that the parity of the dislocation's topological charge governs the transfer of energy between an input wave and its second harmonic. A dislocation with an odd topological charge nulls the efficiency of the otherwise optimal phase matched wavelength, whereas high conversion is now achieved at new wavelengths that exhibited low efficiency without the dislocation.
View Article and Find Full Text PDFWe experimentally demonstrate that the orbital angular momentum (OAM) of a second harmonic (SH) beam, generated within twisted nonlinear photonic crystals, depends both on the OAM of the input pump beam and on the quasi-angular momentum of the crystal. In addition, when the pump's radial index is zero, the radial index of the SH beam is equal to that of the nonlinear crystal. Furthermore, by mixing two noncollinear pump beams in this crystal, we generate, in addition to the SH beams, a new "virtual beam" having multiple values of OAM that are determined by the nonlinear process.
View Article and Find Full Text PDFWe report the observation of nonlinear interactions in quadratic nonlinear crystals having a geometrically twisted susceptibility pattern. The quasi-angular-momentum of these crystals is imprinted on the interacting photons during the nonlinear process so that the total angular momentum is conserved. These crystals affect three basic physical quantities of the output photons: energy, translational momentum, and angular momentum.
View Article and Find Full Text PDFWe develop a technique for two-dimensional arbitrary wavefront shaping in quadratic nonlinear crystals by using binary nonlinear computer generated holograms. The method is based on transverse illumination of a binary modulated nonlinear photonic crystal, where the phase matching is partially satisfied through the nonlinear Raman-Nath process. We demonstrate the method experimentally showing a conversion of a fundamental Gaussian beam pump light into three Hermite-Gaussian and three Laguerre-Gaussian beams in the second harmonic.
View Article and Find Full Text PDFWe propose a novel technique for arbitrary wavefront shaping in quadratic nonlinear crystals by introducing the concept of computer-generated holograms (CGHs) into the nonlinear optical regime. We demonstrate the method experimentally showing a conversion of a fundamental Gaussian beam pump light into the first three Hermite-Gaussian beams at the second harmonic in a stoichiometric lithium tantalate nonlinear crystal, and we characterize its efficiency dependence on the fundamental power and the crystal temperature. Nonlinear CGHs open new possibilities in the fields of nonlinear beam shaping, mode conversion, and beam steering.
View Article and Find Full Text PDFIn multiple-pass nonlinear frequency conversion devices, interacting waves may accumulate different phases, owing to dispersive elements in the system. Phase compensation is therefore necessary for efficient frequency conversion. We experimentally demonstrate phase compensation in a compact semimonolithic frequency-doubling cavity by using a periodically poled KTP crystal.
View Article and Find Full Text PDF