Aim: To investigate the effect of pyruvate and glucose on leucine transamination and 3-methylbutanal production by Lactococcus lactis, including the comparison with cells possessing glutamate dehydrogenase (GDH) activity.
Methods And Results: Lactococcus lactis cells were incubated in chemically defined medium (CDM) with the pH controlled at 5.2 to mimic cheese conditions.
Metabolic interactions between cells affect microbial community compositions and hence their function in ecosystems. It is well-known that under competition for the exchanged metabolite, concentration gradients constrain the distances over which interactions can occur. However, interaction distances are typically quantified in two-dimensional systems or without accounting for competition or other metabolite-removal, conditions which may not very often match natural ecosystems.
View Article and Find Full Text PDFBacterial lipoproteins are well-recognized microorganism-associated molecular patterns, which interact with Toll-like receptor (TLR) 2, an important pattern recognition receptor of the host innate immune system. Lipoproteins are conjugated with two- or three-acyl chains (di- or tri-acyl), which is essential for appropriate anchoring in the cell membrane as well as for the interaction with TLR2. Lipoproteins have mostly been studied in pathogens and have established roles in various biological processes, such as nutrient import, cell wall cross-linking and remodeling, and host-cell interaction.
View Article and Find Full Text PDFBackground: The effects of gut microbiota on human traits are expected to be small to moderate and adding the complexity of the human diseases, microbiome research demands big sample sizes. Fecal samples for such studies are mostly self-collected by participants at home. This imposes an extra level of complexity as sample collection and storage can be challenging.
View Article and Find Full Text PDFUnlabelled: Lactobacilli are found in diverse environments and are widely applied as probiotic, health-promoting food supplements. Polysaccharides are ubiquitously present on the cell surface of lactobacilli and are considered to contribute to the species- and strain-specific probiotic effects that are typically observed. Two Lactobacillus plantarum strains, SF2A35B and Lp90, have an obvious ropy phenotype, implying high extracellular polysaccharide (EPS) production levels.
View Article and Find Full Text PDFBackground: Toll-like receptor (TLR) expression in patients with inflammatory bowel disease is increased when compared with healthy controls. However, the impact of TLR signaling during inflammatory bowel disease is not fully understood.
Methods: In this study, we used a murine model of acute phase inflammation in bone marrow chimeric mice to investigate in which cell type TLR2/4 signal induction is important in preventing intestinal inflammation and how intestinal dendritic cells are influenced.
Acm2, the major autolysin of Lactobacillus plantarum WCFS1, was recently found to be O-glycosylated with N-acetylhexosamine, likely N-acetylglucosamine (GlcNAc). In this study, we set out to identify the glycosylation machinery by employing a comparative genomics approach to identify Gtf1 homologues, which are involved in fimbria-associated protein 1 (Fap1) glycosylation in Streptococcus parasanguinis. This in silico approach resulted in the identification of 6 candidate L.
View Article and Find Full Text PDFMost studies on probiotics aim to restore intestinal homeostasis to reduce immune-pathology in disease. Of equal importance are studies on how probiotics might prevent or delay disease in healthy individuals. However, knowledge on mechanisms of probiotic actions in healthy individuals is scarce.
View Article and Find Full Text PDFTo date it remains unclear how probiotics affect the immune system. Bacterial envelope components may play an essential role, as these are the first to establish bacterial-host cell interactions. Teichoic acids (TAs), and especially lipoteichoic acids, are the most pro-inflammatory components of the gram-positive bacterial envelope.
View Article and Find Full Text PDFBackground: Bacterial cell surface-associated polysaccharides are involved in the interactions of bacteria with their environment and play an important role in the communication between pathogenic bacteria and their host organisms. Cell surface polysaccharides of probiotic species are far less well described. Therefore, improved knowledge on these molecules is potentially of great importance to understand the strain-specific and proposed beneficial modes of probiotic action.
View Article and Find Full Text PDFBackground: Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before.
View Article and Find Full Text PDFMany studies on probiotics are aimed at restoring immune homeostasis in patients to prevent disease recurrence or reduce immune-mediated pathology. Of equal interest is the use of probiotics in sub-clinical situations, which are characterized by reduced immune function or low-grade inflammation, with an increased risk of infection or disease as a consequence. Most mechanistic studies focus on the use of probiotics in experimental disease models, which may not be informative for these sub-clinical conditions.
View Article and Find Full Text PDFBackground: An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species. However, data on the in situ persistence characteristics of individual or mixtures of strains of the same species in the gastrointestinal tract of healthy human volunteers have not been reported to date.
View Article and Find Full Text PDFBackground: Specific strains of Lactobacillus plantarum are marketed as health-promoting probiotics. The role and interplay of cell-wall compounds like wall- and lipo-teichoic acids (WTA and LTA) in bacterial physiology and probiotic-host interactions remain obscure. L.
View Article and Find Full Text PDFAlthough teichoic acids are major constituents of bacterial cell walls, little is known about the relationships between their spatial localization and their functional roles. Here, we used single-molecule atomic force microscopy (AFM) combined with fluorescence microscopy to image the distribution of wall teichoic acids (WTAs) in Lactobacillus plantarum, in relation with their physiological roles. Phenotype analysis of the wild-type strain and of mutant strains deficient for the synthesis of WTAs (ΔtagO) or cell wall polysaccharides (Δcps1-4) revealed that WTAs are required for proper cell elongation and cell division.
View Article and Find Full Text PDFThe use of superoxide dismutases (SODs) in inflammatory diseases is hampered by their short circulatory half-life. To determine whether a bacterial supply of SOD into the colon might improve an experimental colitis, the effects of oral treatment with live recombinant lactic acid bacteria producing different amounts of SOD and those of colonic infusion of SOD were compared. Wistar rats were fitted with a catheter in the proximal colon through which TNBS was administered to induce colitis.
View Article and Find Full Text PDFThis study describes how a metabolic engineering approach can be used to improve bacterial stress resistance. Some Lactococcus lactis strains are capable of taking up glutathione, and the imported glutathione protects this organism against H(2)O(2)-induced oxidative stress. L.
View Article and Find Full Text PDFLactococcus lactis strains are known to carry plasmids encoding industrially important traits. L. lactis subsp.
View Article and Find Full Text PDFBackground: The NIsin-Controlled gene Expression system NICE of Lactococcus lactis is one of the most widespread used expression systems of Gram-positive bacteria. It is used in more than 100 laboratories for laboratory-scale gene expression experiments. However, L.
View Article and Find Full Text PDFThis paper describes the use of the alr gene, encoding alanine racemase, as a promoter-screening tool for the identification of conditional promoters in Lactobacillus plantarum. Random fragments of the L. plantarum WCFS1 genome were cloned upstream of the promoterless alr gene of Lactococcus lactis in a low-copy-number plasmid vector.
View Article and Find Full Text PDFThree isogenic strains of Lactococcus lactis with different levels of H(2)O-forming NADH oxidase activity were used to study the effect of oxygen on glucose metabolism: the parent strain L. lactis MG1363, a NOX(-) strain harboring a deletion of the gene coding for H(2)O-forming NADH oxidase, and a NOX(+) strain with the NADH oxidase activity enhanced by about 100-fold. A comprehensive description of the metabolic events was obtained by using (13)C nuclear magnetic resonance in vivo.
View Article and Find Full Text PDFEveryone who has ever tried to radically change metabolic fluxes knows that it is often harder to determine which enzymes have to be modified than it is to actually implement these changes. In the more traditional genetic engineering approaches 'bottle-necks' are pinpointed using qualitative, intuitive approaches, but the alleviation of suspected 'rate-limiting' steps has not often been successful. Here the authors demonstrate that a model of pyruvate distribution in Lactococcus lactis based on enzyme kinetics in combination with metabolic control analysis clearly indicates the key control points in the flux to acetoin and diacetyl, important flavour compounds.
View Article and Find Full Text PDF