In this paper, the high strength and lightweight Al-Cu-Li alloy (AA2099) is considered in as-built and preheated conditions (440 °C, 460 °C, 480 °C, 500 °C, and 520 °C). The purpose of this study is to investigate the influence of laser powder bed fusion (LPBF) in situ preheating on precipitation microstructure, mechanical and corrosive properties of LPBF-printed AA2099 alloy compared to the conventionally processed and heat-treated (T83) alloy. It is shown that precipitations evolve with increasing preheating temperatures from predominantly globular Cu-rich phases at lower temperatures (as-built, 440 °C) to more plate and rod-like precipitates (460 °C, 480 °C, 500 °C and 520 °C).
View Article and Find Full Text PDFAl-Cu-Li (2xxx series) powders for additive manufacturing processes are often produced by gas atomization, a rapid solidification process. The microstructural evolution of gas-atomized powder particles during solidification was investigated by phase-field simulations using the software tool MICRESS. The following topics were investigated: (1) the microsegregation of copper and lithium in the particle, and the impact of lithium addition on the formation of secondary phases in Al-2.
View Article and Find Full Text PDFAl-Cu-Li alloys are famous for their high strength, ductility and weight-saving properties, and have for many years been the aerospace alloy of choice. Depending on the alloy composition, this multi-phase system may give rise to several phases, including the major strengthening T (AlCuLi) phase. Microstructure investigations have extensively been reported for conventionally processed alloys with little focus on their Additive Manufacturing (AM) characterised microstructures.
View Article and Find Full Text PDF