Palmitoleic acid (C16:1n7) has been identified as a regulator of physiological cardiac hypertrophy. In the present study, we aimed to investigate the molecular pathways involved in C16:1n7 responses in primary murine cardiomyocytes (PCM) and a mouse model of isoproterenol (ISO)-induced cardiac damage. PCMs were stimulated with C16:1n7 or a vehicle.
View Article and Find Full Text PDFCardiac remodeling and contractile dysfunction are leading causes in hypertrophy-associated heart failure (HF), increasing with a population's rising age. A hallmark of aged and diseased hearts is the accumulation of modified proteins caused by an impaired autophagy-lysosomal-pathway. Although, autophagy inducer rapamycin has been described to exert cardioprotective effects, it remains to be shown whether these effects can be attributed to improved cardiomyocyte autophagy and contractility.
View Article and Find Full Text PDFMineralocorticoid receptor antagonists (MRAs) reduce morbidity and mortality in chronic heart failure. Novel nonsteroidal MRAs are currently developed and need to be pharmacologically characterized in comparison to classical steroidal MRAs. A mouse model of cardiac fibrosis induced by short-term isoproterenol injection was used to compare the nonsteroidal MRA finerenone and the steroidal MRA eplerenone in equi-efficient systemic MR blocking dosages.
View Article and Find Full Text PDF