Publications by authors named "Iris Madera-Salcedo"

In systemic lupus erythematosus, immune complexes deposited in the kidney vasculature represent a potent inflammatory trigger with a high potential to progress to glomerulonephritis and organ failure. These immune complexes can be recognized by multiple effector cells via complement and Fcγ receptors. The transcriptome of CD16-bearing NK cells has been documented in kidneys from patients with SLE.

View Article and Find Full Text PDF

Sepsis is a complex condition of inflammatory and immune dysregulation, triggered by severe infection. In survivors, chronic inflammation and immune dysregulation linger, facilitating the emergence of infections. CD8 dysfunction contributes to immunosuppression in sepsis survivors.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) and other autoimmune diseases are thought to develop in genetically predisposed individuals when triggered by environmental factors. This paradigm does not fully explain disease development, as it fails to consider the delay between birth and disease expression. In this review, we discuss observations described in T cells from patients with SLE that are not related to hereditary factors and have therefore been considered secondary to the disease process itself.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how genetic variants in the STAT4 gene impact its expression in CD4+ T cells, which are crucial for immune responses, particularly in systemic lupus erythematosus (SLE).
  • Healthy donors with the risk allele for STAT4 (R/R genotype) show persistent high levels of STAT4 and increased inflammatory responses compared to those with the non-risk allele (NR/NR) after stimulation with interleukin-12 (IL-12).
  • Results suggest that the R/R genotype is linked to worse clinical outcomes in lupus nephritis patients, indicating that targeting the IL-12/STAT4 pathway could improve treatment for these patients.
View Article and Find Full Text PDF

Adaptive immune responses rely on the proliferation of T lymphocytes able to recognize and eliminate pathogens. The magnitude and duration of the expansion of activated T cell clones are finely regulated to minimize immunopathology and avoid autoimmunity. In patients with rheumatic autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis, activated lymphocytes survive and exert effector functions for prolonged periods, defying the mechanisms that normally curb their capacities during acute and chronic infections.

View Article and Find Full Text PDF

Classical dendritic cells (cDC) are professional antigen-presenting cells (APC) that regulate immunity and tolerance. Neutrophil-derived cells with properties of DCs (nAPC) are observed in human diseases and after culture of neutrophils with cytokines. Here we show that FcγR-mediated endocytosis of antibody-antigen complexes or an anti-FcγRIIIB-antigen conjugate converts neutrophils into nAPCs that, in contrast to those generated with cytokines alone, activate T cells to levels observed with cDCs and elicit CD8 T cell-dependent anti-tumor immunity in mice.

View Article and Find Full Text PDF

Activation of self-reactive CD8 T cells induces a peripheral tolerance mechanism that involves loss of CD8 expression. Because genetic deficiency of and causes the accumulation of double-negative (DN; CD3 TCR-αβ CD4 CD8) T cells that have been proposed to derive from CD8 cells, we decided to explore the role of Fas and FasL in self-antigen-induced CD8 downregulation. To this end, we quantified Fas and FasL induction by different stimuli and analyzed the effects of Fas/FasL deficiency during a protective immune response and after exposure to self-antigens.

View Article and Find Full Text PDF

How T cells integrate environmental cues into signals that limit the magnitude and length of immune responses is poorly understood. Here, we provide data that demonstrate that B55β, a regulatory subunit of protein phosphatase 2A, represents a molecular link between cytokine concentration and apoptosis in activated CD8+ T cells. Through the modulation of AKT, B55β induced the expression of the proapoptotic molecule Hrk in response to cytokine withdrawal.

View Article and Find Full Text PDF

Here we investigated the role of murine mast cell protease 4 (MCPT4), the functional counterpart of human mast cell chymase, in an experimental model of renal ischemia reperfusion injury, a major cause of acute kidney injury. MCPT4-deficient mice had worsened kidney function compared to wildtype mice. MCPT4 absence exacerbated pathologic neutrophil infiltration in the kidney and increased kidney myeloperoxidase expression, cell death and necrosis.

View Article and Find Full Text PDF

Chronic inflammation causes target organ damage in patients with systemic autoimmune diseases. The factors that allow this protracted response are poorly understood. We analyzed the transcriptional regulation of PPP2R2B (B55ß), a molecule necessary for the termination of the immune response, in patients with autoimmune diseases.

View Article and Find Full Text PDF

CD8 T cells can kill malignant cells in an antigen-specific manner. However, anti-tumoral responses are usually limited by suppressive factors that curb the effector responses of tumor-infiltrating CD8 T cells. Therapeutic strategies to overcome intra-tumoral T cell suppression, for example immune checkpoint inhibition, have been clinically effective in patients with cancer.

View Article and Find Full Text PDF

Soluble -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family proteins mediate membrane fusion critical for vesicular transport and cellular secretion. Mast cells rely on SNARE-mediated membrane fusion for degranulation stimulated by crosslinking of immunoglobulin E (IgE) bound to the Fcε receptor (FcεRI). We investigated the mechanisms downstream of receptor activation that control degranulation.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is an important cause of acute kidney injury that can lead to end-stage renal failure. Although the ensuing inflammatory response can restore homeostasis, a consecutive maladaptive repair and persistent inflammation represent important risk factors for postischemic chronic kidney disease development. In this study, we investigated the role of mast cells in both the early and late phases of the inflammatory response in experimental models of acute and chronic renal IRI using our recently developed mouse model that allows conditional ablation of mast cells.

View Article and Find Full Text PDF

Yessotoxins (YTXs) are a group of marine toxins produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. They may have medical interest due to their potential role as anti-allergic but also anti-cancer compounds. However, their biological activities remain poorly characterized.

View Article and Find Full Text PDF

Cross-linking of mast cell (MC) IgE receptors (FcεRI) triggers degranulation of secretory granules (SGs) and the release of many allergic and inflammatory mediators. Although degranulation depends crucially on microtubule dynamics, the molecular machinery that couples SGs to microtubule-dependent transport is poorly understood. In this study, we demonstrate that mice lacking Kif5b (the heavy chain of kinesin-1) in hematopoietic cells are less sensitive to IgE-mediated, passive, systemic anaphylaxis.

View Article and Find Full Text PDF

Mast cells produce proinflammatory cytokines in response to TLR4 ligands, but the signaling pathways involved are not fully described. In this study, the participation of the Src family kinase Fyn in the production of TNF after stimulation with LPS was evaluated using bone marrow-derived mast cells from wild-type and Fyn-deficient mice. Fyn(-/-) cells showed higher LPS-induced secretion of preformed and de novo-synthesized TNF.

View Article and Find Full Text PDF

Upon activation mast cells (MCs) secrete numerous inflammatory compounds stored in their cytoplasmic secretory granules by a process called anaphylactic degranulation, which is responsible for type I hypersensitivity responses. Prestored mediators include histamine and MC proteases but also some cytokines and growth factors making them available within minutes for a maximal biological effect. Degranulation is followed by the de novo synthesis of lipid mediators such as prostaglandins and leukotrienes as well as a vast array of cytokines, chemokines, and growth factors, which are responsible for late phase inflammatory responses.

View Article and Find Full Text PDF

Mast cells are hematopoietic cells involved in inflammation and immunity and have been recognized also as important effector cells in kidney inflammation. In humans, only a few mast cells reside in kidneys constitutively but in progressive renal diseases their numbers increase substantially representing an essential part of the interstitial infiltrate of inflammatory cells. Recent data obtained in experimental animal models have emphasized a complex role of these cells and the mediators they release as they have been shown both to promote, but also to protect from disease and fibrosis development.

View Article and Find Full Text PDF

We have previously shown that morphine pretreatment inhibits mast cell-dependent TNF production after LPS injection in the murine peritoneal cavity. In this study, we used bone marrow-derived mast cells (BMMCs) to investigate the molecular mechanisms of that inhibition. We found that morphine prevented LPS-induced TNF secretion in these cells.

View Article and Find Full Text PDF

Objective: To characterize immunosuppressive effects of morphine on the early innate immunity response of cytokine production in peritoneal cavity after LPS challenge.

Methods: The effects of a single i.p.

View Article and Find Full Text PDF