Publications by authors named "Iris Ivy M Gauran"

Given the costliness of HIV drug therapy research, it is important not only to maximize true positive rate (TPR) by identifying which genetic markers are related to drug resistance, but also to minimize false discovery rate (FDR) by reducing the number of incorrect markers unrelated to drug resistance. In this study, we propose a multiple testing procedure that unifies key concepts in computational statistics, namely Model-free Knockoffs, Bayesian variable selection, and the local false discovery rate. We develop an algorithm that utilizes the augmented data-Knockoff matrix and implement Bayesian Lasso.

View Article and Find Full Text PDF

In recent mutation studies, analyses based on protein domain positions are gaining popularity over gene-centric approaches since the latter have limitations in considering the functional context that the position of the mutation provides. This presents a large-scale simultaneous inference problem, with hundreds of hypothesis tests to consider at the same time. This article aims to select significant mutation counts while controlling a given level of Type I error via False Discovery Rate (FDR) procedures.

View Article and Find Full Text PDF

The fight against cancer is hindered by its highly heterogeneous nature. Genome-wide sequencing studies have shown that individual malignancies contain many mutations that range from those commonly found in tumor genomes to rare somatic variants present only in a small fraction of lesions. Such rare somatic variants dominate the landscape of genomic mutations in cancer, yet efforts to correlate somatic mutations found in one or few individuals with functional roles have been largely unsuccessful.

View Article and Find Full Text PDF